
Compositional modelling using Petri nets

with the analysis power

of stochastic hybrid processes

Mariken Everdij

Compositional modelling using Petri nets

with the analysis power

of stochastic hybrid processes

The research for this thesis was funded in part by

the National Aerospace Laboratory NLR, Amsterdam

and Research Institute CTIT of the University of Twente

Graduation committee:

prof. dr. A. Bagchi University of Twente (promotor)

prof. dr. ir. B.R.H.M. Haverkort University of Twente (promotor)

prof. dr. ir. R. Boel University of Gent

dr. ir. H.A.P. Blom National Aerospace Laboratory NLR

dr. ir. R. Langerak University of Twente

dr. J.W. Polderman University of Twente

dr. ir. H.A. Reijers Eindhoven University of Technology

prof. dr. A.J. van der Schaft University of Groningen

prof. dr. A.A. Stoorvogel University of Twente

Title: Compositional modelling using Petri nets with the analysis power of stochastic hybrid

processes

Author: M.H.C. Everdij

ISBN 978-90-365-3015-6

Copyright c©2010 by M.H.C. Everdij

No part of this work may be reproduced by print, photocopy or any other means without the

permission in writing from the author.

COMPOSITIONAL MODELLING USING PETRI NETS

WITH THE ANALYSIS POWER

OF STOCHASTIC HYBRID PROCESSES

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op vrijdag 11 juni 2010 om 16.45 uur

door

Maria Hendrika Clara Everdij

geboren op 17 maart 1968

te Wageningen

Dit proefschrift is goedgekeurd door de promotoren:

prof. dr. A. Bagchi

prof. dr. ir. B.R.H.M. Haverkort

Contents

1 Introduction 1

2 Petri nets literature 9

2.1 Introduction to Petri nets . 9

2.2 Place/transition nets . 11

2.2.1 Definitions . 11

2.2.2 Properties of P/T nets and their decidability 16

2.3 Coloured Petri nets . 21

2.4 Timed Petri nets . 23

2.5 Hybrid Petri nets . 25

2.6 Compositional specification . 28

2.7 Concluding remarks . 30

3 Dynamically coloured Petri nets 33

3.1 Introduction . 33

3.2 Preliminaries . 34

3.3 Dynamically coloured Petri nets . 36

3.3.1 DCPN elements . 37

3.3.2 DCPN execution . 39

3.3.3 DCPN stochastic process . 44

3.4 Piecewise deterministic Markov processes . 44

3.4.1 PDP elements . 45

3.4.2 PDP execution . 46

3.4.3 PDP conditions . 47

3.5 Piecewise deterministic Markov processes into dynamically coloured Petri nets . . 48

3.5.1 Construction of DCPNPDP elements . 49

3.5.2 DCPNPDP execution . 51

3.5.3 Pathwise equivalence . 52

3.6 Dynamically coloured Petri nets into piecewise deterministic Markov processes . . 54

3.6.1 Construction of PDPDCPN elements . 55

3.6.2 Probabilistic equivalence . 58

3.6.3 Verification of P1–P4 . 60

3.7 Discussion of conditions of Theorem 3.2 . 61

ii CONTENTS

3.7.1 Discussion on finite number of tokens . 61

3.7.2 Discussion on Condition D1 (local Lipschitz and no explosions) 62

3.7.3 Discussion on Condition D2 (recognisable jumps) 63

3.7.4 Discussion on Condition D3 (finite number of firings) 63

3.8 Concluding remarks . 65

3.9 Appendix: Characterisation of Q in terms of DCPN elements 66

4 Stochastically and dynamically coloured Petri nets 71

4.1 Introduction . 71

4.2 Preliminaries . 72

4.3 Stochastically and dynamically coloured Petri nets 77

4.3.1 SDCPN elements . 77

4.3.2 SDCPN execution . 78

4.3.3 SDCPN stochastic process . 79

4.4 Hybrid stochastic differential equations . 79

4.4.1 HSDE elements and equations . 80

4.4.2 HSDE solution . 81

4.5 Hybrid stochastic differential equations into stochastically and dynamically coloured

Petri nets . 82

4.5.1 Construction of SDCPNHSDE elements . 83

4.5.2 Probabilistic equivalence . 85

4.6 Stochastically and dynamically coloured Petri nets into hybrid stochastic differen-

tial equations . 88

4.6.1 Construction of HSDESDCPN elements . 90

4.6.2 Probabilistic equivalence . 93

4.6.3 Verification of H1-H8 . 95

4.7 Discussion of conditions of Theorem 4.5 . 97

4.7.1 Discussion on finite number of tokens . 97

4.7.2 Discussion on Condition S1 (growth and local Lipschitz) 98

4.7.3 Discussion on Condition S2 (bounded jumps) 98

4.7.4 Discussion on Condition S3 (continuous and bounded delays) 99

4.7.5 Discussion on Condition S4 (finite number of firings) 99

4.7.6 Discussion on Condition S5 (continuous firing measures) 99

4.7.7 Discussion on Condition S6 (distinguishable token distributions) 99

4.8 Equivalence between SDCPN and stochastic hybrid automata 100

4.8.1 Definition of GSHS and its execution . 100

4.8.2 Equivalence relations between SDCPN and GSHS 102

4.9 Concluding remarks . 103

5 Compositional specification of SDCPN 105

5.1 Introduction . 105

5.2 Local Petri nets-based specification of an SDCPN 107

5.2.1 Specification of local Petri net . 107

CONTENTS iii

5.2.2 Interconnections between LPNs . 109

5.3 Interconnection mapping types . 111

5.3.1 Avoid duplication of transitions and arcs within an LPN 112

5.3.2 Avoid cluttering of interconnections between LPNs 115

5.3.3 Clustering of LPNs . 117

5.3.4 Avoid duplication and cluttering within an LPN 119

5.3.5 Combinations of interconnection mapping types 120

5.4 Extension of SDCPN with interconnection mapping types I through VIII 122

5.4.1 SDCPNimt elements . 123

5.4.2 SDCPNimt execution . 124

5.4.3 Relation between SDCPNimt and GSHP 127

5.5 Concluding remarks . 128

5.6 Appendix: Analysis of interconnection mapping types allowed 128

6 Analysis of DCPN and SDCPN 137

6.1 Analysis of classical Petri net properties for SDCPN 137

6.2 Example SDCPN and mapping to HSDE and GSHS 139

6.2.1 Aircraft evolution example . 139

6.2.2 SDCPN model for the aircraft evolution example 140

6.2.3 Mapping to HSDE and to GSHS . 142

6.3 Example DCPN and its analysis by means of PDP stochastic analysis tools 145

6.4 Example illustrating the effectiveness of SDCPNimt 149

6.4.1 LPNs of the free flight air transport example 150

6.4.2 Interconnected LPNs of ‘pilot-flying’ . 152

6.4.3 Effectiveness of imt approach for example 152

7 Conclusions 155

7.1 Main results of this thesis . 155

7.2 Further study . 159

Bibliography 160

A Preliminaries on stochastic processes 179

Index 187

Abstract 191

Samenvatting 193

Acknowledgements 195

Curriculum vitae 199

iv CONTENTS

Chapter 1

Introduction

Motivation – safety assessment of large scale air transport operations

During the last three decades, the demand for air transport increased significantly. Statistics

show that the number of commercial flights worldwide doubled from 18 million in 1980 to 38

million in 2007, [ITWM08]. It is generally expected that this trend will continue. However, the

growth of air transport is bounded by limits to accommodate these numbers of flights, such as limits

on the acceptable number of incidents and accidents that may occur, on the amount of noise and

pollution, on the number of flight delays, on acceptable workload for air traffic controllers and

pilots, and on the availability of suitable infrastructure.

In response to the growth trends, the air transport community has been continuously investigat-

ing means to create more capacity for the expected demand for air transport. In addition, even under

the assumption that this demand does not increase, the occurrence of major accidents, such as the

mid-air collision in 2002 between a Boeing-757 and a Tupolev-154 above Überlingen, Germany,

and the subsequent media uproar, is a main driver to improve upon the ways in which air transport

is managed and accommodated. New operational concepts are being developed, which involve the

development of new procedures, modern technical systems and tools for pilots and controllers, new

runways and taxiways, and the re-organisation of airspace structure.

One of the key questions during the development of such operational concept is: does the

new concept indeed improve what it aims to improve? For example, is it indeed able to safely

accommodate a doubling of air transport, does it indeed lead to acceptable workload for the air

traffic controller, does it indeed lead to an acceptable number of aircraft accidents? Obviously, such

questions need to be answered before the concept is actually introduced into practice, and before

large investments are made to enable it.

Safety risk analysis of air transport operational concepts are a means towards addressing the

safety-related questions above. Formally, risk is a product of probability (or frequency) and

consequences. Probability is usually expressed in terms of a given exposure, e.g., the number

2 Introduction

of events per aircraft flight hour, or per landing or departure. Consequences are often described in

terms like catastrophic, major, minor. Safety risk analysis is a systematic approach for evaluating

or assessing safety risk. It involves the identification of all perceivable safety-related situations,

including their combinations and interactions, a predictive analysis of how and how often these

situations occur, and a predictive analysis of the impact of these situations. In addition, the main

contributors to risk are identified, so that they can be addressed at an early stage by the developers

of the new operational concept in order to improve the situation. If several alternative operational

concepts are evaluated in parallel, the analysis results can be used to drop prospectless ideas at an

early stage, and to further improve the prospective ideas.

For any proposed operational concept, but particularly if the proposed operational concept is

of a large scale, i.e., involving many elements, human operators, distributed systems, and complex

interactions between all these elements, it is usually difficult to analyse the safety-related situations

that may occur during its operation. The human mind, even the mind of an experienced safety

expert, is simply not capable of having the overview of all combinations of safety-related situations,

in order to assess their frequency and their consequences. The way out of this is to make a model of

the operational concept, which covers the relevant elements and their interactions and combinations,

and to analyse the concept based on the model.

Challenges in modelling of large scale air transport operations

The most popular existing risk modelling formalisms typically represent interactions between

all entities involved by means of linear relations. Examples of these formalisms are fault

trees and event trees, see, e.g., [EB08] for an overview and descriptions. The big advantage

of these formalisms is that, once such models have been constructed, they are transparent and

understandable to most experts, and as such, they are a great tool for risk communication purposes.

A main disadvantage is that in case of complex operations, the interactions between entities are

usually not linear and these formalisms fall short; the risk level due to the model will not represent

the risk level of reality and even estimating the error made is very difficult. Typical non-linear

properties of air transport operations are:

• Dynamics: Many processes are time-dependent and there is no fixed sequence of events. For

example, the reaction time of an operator in response to an event may be longer due to the

complexity of the situation, leading to other operators undertaking action first, though with

another solution than the first operator would have taken.

• Multi-dimensional continuous processes: For example, the positions and velocities of

multiple aircraft are continuous processes that have an impact on other processes such as

collision detection and avoidance activities.

3

• Jumps: Air transport operations are influenced by discrete occurrences like technical failures

or human interventions and decisions, which create discontinuities in otherwise continuous

processes.

• Stochastics: Many of the processes and events are unpredictable or uncertain. Stochastics are

present in different ways: in time, such as in sudden occurrences of events, and in state, such

as uncertainties in observations of otherwise reasonably ‘smooth’ processes like the position

of an aircraft.

• Complex interactions between distributed multiple agents: Air transport is a highly dis-

tributed safety critical operation. Each aircraft has its own crew, and each crew is

communicating with and receives safety critical instructions from multiple human operators

in different centres on the ground. All these agents interact, and common cause hazards may

affect several agents as well as how they interact.

Since these non-linear properties cannot be captured well with the traditional linear approaches, an

alternative modelling formalism is needed.

Stochastic hybrid processes to face the challenges

A stochastic hybrid process (SHP) is a generic name for a group of mathematical formalisms

that capture the interaction of discrete and continuous dynamics and uncertainty. Here, the word

hybrid refers to the notion that two different types of process (i.e., discrete and continuous) are

combined, and the word stochastic refers to the uncertainties captured. Examples of stochastic

hybrid processes are piecewise deterministic Markov process (PDP) [Dav84, Dav93], switching

diffusion process (SDP) [GAM91], stochastic hybrid system (SHS) [HLS00], and general stochastic

hybrid process (GSHP), [BBEP03, KB05a, BL06, Kry06]. Bujorianu et al. [BLGP03] and Krystul

et al. [KB05a, Kry06] give comparative studies of these formalisms, which show that GSHP

combine the features of the other approaches mentioned. This thesis focuses on the classes of

PDP and GSHP. Since PDP are a special case of GSHP, the term GSHP is sometimes referred to as

meaning "PDP and/or GSHP".

A GSHP is a stochastic hybrid process that, most of the time, follows the solution of a stochastic

differential equation. At some times, however, the process may jump. Such jumps may be

spontaneous, i.e., occurring at a random time, or forced, i.e., occurring when the process state

hits the boundary of its state space. After the jump, the process follows the solution of a stochastic

differential equation that may be different from the previous one, until the next jump occurs. For

PDP, the stochastic differential equations are replaced by ordinary differential equations.

GSHP can represent most of the non-linear properties of air transport operations listed above,

hence can be used to capture virtually all processes existing in air transport operations. In addition,

4 Introduction

GSHP are supported by stochastic analysis instruments and have powerful mathematical properties,

which guarantee a unique evaluation of the model and which allow speeding up this evaluation

while keeping the model properties intact. The one property of air transport that cannot be easily

addressed directly by means of GSHP is the last property in the list above, i.e., the complex

interactions property. Using GSHP to construct a model of a complex air transport operation that

is influenced by many factors such as human operators who communicate and make decisions,

technical systems that interact, external influences, etc., is not easy. To support the modelling, and

particularly the subsequent verification both by mathematical and by multiple operational domain

experts, a supporting graphical modelling formalism is desired.

Petri nets to support the modelling of stochastic hybrid processes

For safety-critical operations in the nuclear and chemical industries, Petri nets have proven

to be useful for the compositional specification of appropriate accident risk assessment models,

and there is an abundance of literature available on their use, properties and applications, see,

e.g., [RH10]. Therefore, Petri nets form an excellent candidate for providing graphical support to

modelling GSHP. A Petri net is a graph of places (circles) and transitions (squares), connected by

arcs (arrows). The places represent modes or conditions, the transitions represent mode switches,

actions or events. In order to be able to capture the qualities of GSHP, a supporting Petri net

class needs to have the same powerful mathematical properties as GSHP. More specifically, we

need a Petri net class for which equivalence can be proven. Since such property does not hold

for the existing Petri net classes, this thesis develops a new class, referred to as stochastically

and dynamically coloured Petri net. This new class contains three Petri net extensions. The first

is dynamically coloured Petri net (DCPN), which is shown to be equivalent to PDP. The second

is stochastically and dynamically coloured Petri net (SDCPN), which is shown to be equivalent to

GSHP. The third is stochastically and dynamically coloured Petri net with interconnection mapping

types (SDCPNimt), which is shown to be equivalent to both SDCPN and GSHP.

These developments extend the power-hierarchy of dependability models developed by Mal-

hotra and Trivedi [MT94] and Muppala et al. [MFT00], see Figure 1.1. An arrow from a model

to another model indicates that the second model has more modelling power1 than the first model.

At the bottom of this power-hierarchy are fault trees and the related reliability block diagrams.

Towards the top, on the left-hand-side of the power hierarchy are Petri net models, with generalised

stochastic Petri nets (GSPN) in the middle, and deterministic and stochastic Petri nets (DSPN) at

the top. On the right-hand-side of this power hierarchy are continuous-time Markov chains in the

middle and semi-Markov processes at the top. The developments of this thesis extend this power-

1In [MT94], modelling power is determined by the kinds of dependencies within subsystems that can be modelled

and the kinds of dependability measures that can be computed.

5

hierarchy with DCPN, SDCPN and SDCPNimt on the left-hand-side and PDP and GSHP on the

right-hand-side.

Reliability block diagram Fault tree

Reliability graph

Fault tree with repeated events

Generalised stochastic Petri net Continuous-time Markov chain

Stochastic reward net Markov reward model

Deterministic stochastic Petri net Semi-Markov process

DCPN PDP

SDCPN GSHP

SDCPNimt

[MT94]

[MT94] [MT94]

[MT94]

[MT94] [MT94]

[MFT00] [MFT00]

[MT94]

[MFT00] [MFT00]

[MT94]

[EB03] [Dav84]

This thesis

This thesis This thesis

This thesis

This thesis
This thesis

Figure 1.1 Power hierarchy among various model types. An arrow from a model to another model

indicates that the second model has more modelling power than the first model.

Combining the strengths of the approaches developed

The classes of stochastic hybrid process and the classes of stochastically and dynamically

coloured Petri net each have their own features and strengths. With the equivalence relations

between the two types of formalisms proven in this thesis, the strengths of the two formalisms

are combined. The compositional specification power of Petri nets is enhanced with the stochastic

analysis power of stochastic hybrid processes and vice versa, see Figure 1.2. Due to the equivalence

between SDCPN and GSHP, typical GSHP properties can be used to analyse the SDCPN, even

without elaborating the particular transformation from SDCPN to GSHP for the application

6 Introduction

considered. The complementary advantages of SDCPN and GSHP perspectives tend to even

increase with the complexity of the considered operation.

Compositional
specification

Stochastic
analysis

SDCPN GSHP

Figure 1.2 Relationship between SDCPN and GSHP, and their main capability support

Organisation of this thesis

The organisation of this thesis is as follows:

• Chapter 2 gives an overview of Petri net literature, which starts with a description of the most

widely studied Petri net class, i.e., place/transition net, including analysis techniques for the

evaluation of typical properties like boundedness. Subsequently, the chapter treats various

extensions of Petri net classes from literature. These classes contain elements relevant for the

development of DCPN, SDCPN and SDCPNimt.

• Chapter 3 develops dynamically coloured Petri net (DCPN), and proves equivalence to

piecewise deterministic Markov process (PDP) developed in [Dav93]. This chapter is based

on (Everdij and Blom, 2005), [EB05].

• Chapter 4 develops stochastically and dynamically coloured Petri net (SDCPN), and proves

equivalence with general stochastic hybrid process (GSHP), which is defined as solution of a

hybrid stochastic differential equation on a hybrid state space (HSDE) developed in [Blo03,

BBEP03]. In addition, it proves equivalence between SDCPN and a particular class of GSHP-

related automaton, referred to as general stochastic hybrid system (GSHS), developed in

[BL06]. This chapter is based on (Everdij and Blom, 2006, 2010b), [EB06, EB10b].

• Chapter 5 further increases the modelling power of SDCPN by extending the SDCPN

definition to SDCPNimt. The extension is by the inclusion of rules and notations that allow

to develop a Petri net by a hierarchical approach that separates local modelling issues from

compositional or interaction modelling issues, and that significantly reduces the graphical

representation of the number of interconnections between local Petri nets. It is shown that the

extension maintains the equivalence relations with GSHP. This chapter is based on (Everdij,

Klompstra, Blom and Klein Obbink, 2006), [EKBK06].

• Chapter 6 provides several examples which apply DCPN, SDCPN and SDCPNimt to air

transport operations, and describes tools for their analysis. The examples cover the SDCPN

7

formalism and their mapping to GSHP, the analysis of DCPN by making use of PDP

properties, and the effectiveness of the SDCPNimt approach.

• Chapter 7 draws conclusions. It explains the main result of this thesis, which is the

development of three types of Petri net, DCPN, SDCPN and SDCPNimt, with the analysis

power of PDP and GSHP. With this, the compositional modelling power of Petri nets is

combined with the analysis power of stochastic hybrid processes. This chapter is based on

(Everdij and Blom, 2010a, 2010b), [EB10a, EB10b].

• Appendix A provides a brief overview of definitions and notations on stochastic processes

adopted from literature.

8 Introduction

Chapter 2

Petri nets literature

2.1 Introduction to Petri nets

A Petri net is a graphical and mathematical instrument to model discrete event systems. It

consists of places (circles), transitions (squares), and arcs (arrows) that connect them. Ingoing arcs

connect places with transitions, while outgoing arcs start at a transition and end at a place. If an arc

is labelled with a number, it has a weight. The places may contain zero or more tokens (dots); the

current discrete state of the Petri net (the marking) is given by the number of tokens in each place.

•

•
2

P1

P2

P3

P4

P5

T1

T2

T3

T4

Figure 2.1 Example Petri net with five places, four transitions, and two tokens. The arc from

transition T1 to place P1 has weight 2

Transitions may fire, i.e., remove tokens from their input places and produce tokens for their

output places, thus modelling a (discrete) event. A transition is only allowed to fire if it is enabled,

which is the case if there are enough tokens available in its input places (i.e., all the preconditions

for the event are fulfilled). The arc weights indicate how many tokens are moved along that arc

upon firing.

Petri nets were first1 developed by Carl Adam Petri in 1962 in his dissertation [Pet62] (second

edition: [Pet66]). These first nets were called condition/event nets (C/E nets). In this net model,

1Petri is reported to have originally invented them in 1939, at the age of 13, for the purpose of describing chemical

processes, [RH10].

10 Petri nets literature

each place may contain at most one token; the place represents a Boolean condition, which is either

true (there is a token) or false (there is no token), and transition events change the truth value of the

conditions. Many researchers contributed to the development of new net models, basic concepts,

and analysis methods, see, e.g., [CL99], [DA94], and [Mur89] for good overviews. Place/transition

nets (P/T-nets), introduced around 1980, became the generally best known; they allow a place to

contain several tokens. Petri nets have proven to be very useful in developing models for various

practical applications. As [BSC+93] puts it, Petri nets have the following practical features for

modelling:

• Graphical and equational representations, allowing comparative advantages for documenta-

tion and analytical studies.

• Natural expression of causal dependencies, conflicts, and concurrency.

• Simple, appealing and powerful synchronisation mechanism, making natural the construction

of mutual exclusion constraints.

• Locality of states and actions, which allows the hierarchical and the modular construction of

large net models.

The purpose of this chapter is to give an overview of Petri net literature, in order to illustrate

how a variety of Petri net classes has been developed in the literature by incorporation of powerful

features, to paint a picture of the origin of the Petri net types developed in this thesis, i.e., DCPN,

SDCPN and SDCPNimt, as a mixture of existing features and new ones, and to present techniques

for the analysis of Petri nets that could be borrowed or adapted to the analysis of these new types.

Since there is an abundance of material available, the chapter does not aim to be complete. The

overview starts with P/T nets, which is the most widely studied class. Subsequently, it treats several

particular Petri net classes beyond P/T nets: coloured nets (in which the tokens are distinguished by

values), timed nets (in which the tokens are temporarily held at places or transitions before being

fired), hybrid Petri nets (which combine discrete and continuous net elements), and classes that

exploit the compositional specification of Petri nets.

Remark 2.1. It is noted that many other Petri net classes exist beyond the ones mentioned in this

chapter. Links and references to more classes, and to supporting software tools, can be found at the

Petri net world website, [RH10]. Several attempts have been reported to develop a classification

scheme in which all Petri net classes fit. A popular one outlines classes that can be derived from

P/T nets, referred to as Restrictions, Extensions, Abbreviations, and Parametrisations of P/T nets,

see [GV03] and [DA94]. A very extensive exercise to obtain a structured access to Petri nets is

being undertaken by the DFG-Forschergruppe Petri Net Technology. This group developed the Petri

2.2 Place/transition nets 11

Net Baukasten, [WER+03], [Pad99], [BBD+99], which distinguishes an application developer

view, an expert view, and a tool developer view. These views are related via the common base,

i.e., a classification of Petri net techniques. The classification has a root that splits into twelve

specialisation paths, which consider different options for the composition and behaviour of the

possible Petri net elements.

2.2 Place/transition nets

As an introduction to the Petri net formalism, this section describes the most widely studied

class, i.e., place/transition net (P/T net). This covers a general definition of P/T net, and an

explanation of their use in terms of properties that can be studied. For more detail and for references

to supporting material, see, e.g., [CL99], [DA94], [Mur89], and [BSC+93].

2.2.1 Definitions

Definition 2.1 (P/T net graph). A P/T net graph is a weighted bipartite graph represented by the

collection (P, T , A, w), where

• P is the finite set of places

• T is the finite set of transitions

• A ⊆ (P × T) ∪ (T × P) is the set of arcs

• w : A → {1, 2, 3, . . .} is the weight function on the arcs; default weight is 1.

If the set P contains m places, these places are generally referred to as P1, . . . , Pm. If the set T
contains n transitions, these transitions are generally referred to as T1, . . . , Tn. An arc from a place

in P to transition Tj (j ∈ {1, . . . , n}) is called an incoming arc of Tj . The set of all places with

incoming arcs to transition Tj (input places) is denoted by I(Tj). An arc from transition Tj to a

place in P is called an outgoing arc of Tj . The set of all places with outgoing arcs from transition

Tj (output places) is denoted by O(Tj). If all arc weights are equal to 1, the P/T net is referred to

as ordinary Petri net.

Definition 2.2 (Incidence matrix). For a P/T net graph with m places and n transitions, the

incidence matrix E = [eij] is an m× n matrix of integers given by

eij = −w(Pi, Tj) + w(Tj, Pi)

12 Petri nets literature

where w(Pi, Tj) is the weight of the arc from place Pi to transition Tj , w(Tj, Pi) is the weight of

the arc from transition Tj to place Pi, and where the weight is defined to be zero for arcs that are

not in A.

A pair comprised of a place P and a transition T is called a self-loop if P is both an input place

and an output place of T . A P/T net is said to be pure if it contains no self-loop. Pure nets are

completely characterised by their incidence matrix. If a net is not pure, the self-loops cannot be

identified from the incidence matrix. A self-loop can be easily eliminated, e.g., by expanding the

transition into a sequence: initial transition – intermediate place – final transition.

Definition 2.3 (Marking). A P/T net marking M defines a distribution of tokens among the places

of a P/T net, i.e.:

M = (M(P1),M(P2), . . . ,M(Pm))
′ ∈ Nm

with m the number of places in P , M(Pi) equal to the number of tokens in place Pi ∈ P , and

N , {0, 1, 2, . . .} the set of natural numbers.

Here, (·, ·)′ denotes the column vector which is the transposed form of the row vector (·, ·).

Definition 2.4 (Marked P/T net, or P/T net). A marked P/T net is a collection (P, T ,A, w,M0),

where (P, T ,A, w) is a P/T net graph and M0 is the initial marking of the P/T net.

In other words, a marked P/T net is a P/T net graph with tokens. A marked P/T net can also be

written as (N,M0) where N is a P/T net graph (P, T , A, w). In the literature, the word ‘marked’

in ‘marked P/T net’ is generally omitted.

Definition 2.5 (Enabled). A transition Tj ∈ T in a P/T net is enabled at a given marking if each

input place has at least as many tokens as the weight of the arc joining it to the transition, i.e.:

M(Pi) ≥ w(Pi, Tj) for all Pi ∈ I(Tj).

Definition 2.6 (Firing). A transition that is enabled can fire, i.e., remove and produce tokens. If Tj

is enabled in marking Mk−1, the new marking after Tj fires is Mk where

Mk(Pi) =Mk−1(Pi)− w(Pi, Tj) + w(Tj, Pi), i = 1, . . . , m

=Mk−1(Pi) + eij, i = 1, . . . , m

This means that when firing, a transition removes tokens from all its input places and produces

tokens for all its output places. The number of tokens removed and produced is given by the weights

of the arcs. An important remark concerning the firing rule of P/T nets is that enabled transitions

are never forced to fire.

2.2 Place/transition nets 13

Definition 2.7 (State equation or fundamental equation). With Mk a column vector representing

the marking at step k, E the incidence matrix, and uk a vector noting which transition(s) fire(s) at

step k, i.e., its jth component equals 1 if Tj fires and equals 0 otherwise, the state equation (also

referred to as fundamental equation) is given as:

Mk =Mk−1 + E · uk

Note that the state equation can be used to take multiple steps directly. E.g., if u1, u2, . . . , uk

are vectors noting which transition(s) fire(s) at steps 1 through k, then the sum of the corresponding

state equations yields:

Mk =M0 + E ·
k∑

i=1

ui

Also note that if a non-negative solution u exists for M =M0 + E · u, this does not imply that

there exists a sequence of transitions so that M can be reached from M0.

Definition 2.8 (Firing sequence or occurrence sequence). A sequence of firings will result

in a sequence of markings. A firing sequence or occurrence sequence is denoted by σ =

M0Tj1M1Tj2M2 . . . TjkMk or simply σ = Tj1Tj2 . . . Tjk , if Tjr fires at step r; r = 1, . . . , k.

Definition 2.9 (Reachable). A marking M is said to be reachable from M0 if there exists a firing

sequence σ that transforms M0 to M . Notation: M0[σ〉M .

Definition 2.10 (Reachable set, language). Consider a P/T net (N,M0). The reachable set

R(N,M0) is the set of all markings reachable from M0, i.e., R(N,M0) = {M | M0[σ〉M for

some firing sequence σ}. The language L(N,M0) is the set of all (finite length) firing sequences,

including the zero-length (empty) sequence, i.e., L(N,M0) = {σ | M0[σ〉M for some reachable

marking M}.

Definition 2.11 (Reachability graph). If R(N,M0), i.e., the set of all markings reachable from M0,

is finite, the reachability graph of the P/T net exists (is finite) and is defined by a graph with nodes

equal to the elements of R(N,M0). In the graph there is an arrow between nodes Mi and Mj ,

labelled by transition Tk, if and only if Mi[Tk〉Mj .

If R(N,M0) is not finite, the reachability graph would get infinitely large. Coverability graphs

allow to obtain finite representations of infinite reachability graphs.

Definition 2.12 (Coverability graph). A coverability graph is a graph with nodes equal to a finite

set of reachable markings (called the coverability set) that covers all markings of R(N,M0). Here,

marking M covers marking M if M(P) ≥ M(P) for all places P ∈ P . (And M is coverable if

there exists a markingM ∈ R(N,M0) such thatM(P) ≥M(P) for all places P .) In a coverability

14 Petri nets literature

graph there is an arrow between nodes Mi and Mj , labelled by transition Tk if and only if Tk is

firable from Mi and a marking covered by Mj is reached. A symbol ̟ is used in the nodes of the

graph to represent ‘any number of tokens’ in a particular place.

Definition 2.13 (Place invariant, transition invariant). A place invariant or P -invariant is a solution

to the equation y′ · E = 0, where E is the incidence matrix and y is a vector of integers. It

characterises a set of places whose weighted sum of tokens remains constant at all reachable

markings. A P -invariant is also defined by all integer vectors y such that for all reachable markings

M ∈ R(N,M0), y′ ·M = y′ ·M0 (use that M = M0 + E · u and multiply from the left by y′). A

linear combination of P -invariants is also a P -invariant. A transition invariant or T -invariant is a

solution to the equationE ·y = 0, where E is the incidence matrix and y is a vector of non-negative

integers. If each transition fires as many times as the value of the corresponding component of the

vector y indicates, the original marking is restored. A linear combination of T -invariants is also a

T -invariant.

Example 2.1 (P/T net, incidence matrix, marking, state equation, firing sequence, coverability

graph). Figure 2.1 on Page 9 shows a P/T net defined by P = {P1, P2, P3, P4, P5}; T =

{T1, T2, T3, T4}; A = {(T1, P1), (T1, T2), (P1, T2), (P2, T3), (T2, P3), (T3, P4), (P3, T4), (P4, T4),

(T4, P5), (P5, T1)}; w(T1, P1) = 2, and w(A) = 1 for all other A ∈ A.

The incidence matrix corresponding to this P/T net is:

E =




2 −1 0 0

1 0 −1 0

0 1 0 −1

0 0 1 −1

−1 0 0 1




As one can see, each column in the incidence matrix corresponds with one transition, and with the

marking modification if that transition is fired. For example, the second column means that if T2 is

fired, one token is removed from P1 and one token is produced for P3.

The current marking M0 of the P/T net in Figure 2.1 is (1, 1, 0, 0, 0)′. Transitions T2 and T3

are both enabled, since they each have a token in their input place. The other transitions are not

enabled. If transition T2 fires (and T3 does not), it removes its input token from P1 and produces

an output token for its output place P3, making the new marking equal to M1 = (0, 1, 1, 0, 0)′

(see Figure 2.2 (a)). In terms of the state equation, this can be represented by M1 = M0 + E ·
(0, 1, 0, 0)′ = (0, 1, 1, 0, 0)′. The firing sequence is σ1 = T2 (or σ1 =M0T2M1).

After this, only transition T3 is enabled. If it fires, the marking is changed into (0, 0, 1, 1, 0)′

(Figure 2.2 (b)). Now, transition T4 is enabled: it has two input places which both contain a token.

2.2 Place/transition nets 15

•

•
2

P1

P2

P3

P4

P5

T1

T2

T3

T4

(a) Due to firing sequence σ1 = T2

•

•
2

P1

P2

P3

P4

P5

T1

T2

T3

T4

(b) Due to firing sequence σ2 = T2T3

•

2

P1

P2

P3

P4

P5

T1

T2

T3

T4

(c) Due to firing sequence σ3 = T2T3T4

••

•
2

P1

P2

P3

P4

P5

T1

T2

T3

T4

(d) Due to firing sequence σ4 = T2T3T4T1

Figure 2.2 P/T net of Figure 2.1 in which subsequently T2, T3, T4 and T1 have fired

It removes both these tokens, and produces a token for its only output place P5; the marking is

(0, 0, 0, 0, 1) (Figure 2.2 (c)). This makes transition T1 enabled, which removes the token from P5,

produces one token for place P2, and (since the weight of the arc from T1 to P1 equals 2) produces

two tokens for place P1. The new marking is (2, 1, 0, 0, 0)′ (Figure 2.2 (d)).

The resulting markings can also be found directly from the initial marking by using the state

equation: For example, if M0 = (1, 1, 0, 0, 0)′, then after all transitions have fired once, i.e.,∑4
k=1 uk = (1, 1, 1, 1)′, the new marking equals:

M4 =M0 + E ·
4∑

k=1

uk =




1

1

0

0

0




+




2 −1 0 0

1 0 −1 0

0 1 0 −1

0 0 1 −1

−1 0 0 1







1

1

1

1




=




2

1

0

0

0




This is the situation of Figure 2.2 (d), which is due to firing sequence σ4 = T2T3T4T1. One may

easily see that from this point onwards, the number of tokens in places P1 and P3 may continue to

increase. This yields that the reachability graph is of infinite size. A coverability graph of the P/T

net in Figure 2.1 is given in Figure 2.3.

16 Petri nets literature

(̟, 1, ̟, 0, 0)

(̟, 0, ̟, 0, 1)

(̟, 0, ̟, 1, 0)

T2

T2

T4

T1

T3

Figure 2.3 Coverability graph for the P/T net of Figure 2.1

2.2.2 Properties of P/T nets and their decidability

Once a P/T net has been constructed, one can analyse it in order to find an answer to questions

like does its reachability graph exist?, or is marking M reachable? A term important in studying

such Petri net properties is decidability, hence we explain that term first.

Decidability

A decision problem H is a set of questions, each of which has a yes or no answer. A solution

to a decision problem H is an algorithm that determines the appropriate answer to every question

h ∈ H . The term decidability2, denotes whether one can determine the answer in a finite number

of computational steps.

Definition 2.14 (Decidable, algorithm, effective). A yes-or-no question is decidable if there is an

effective algorithm that is guaranteed to give an answer to the question in a finite amount of time.

An algorithm is a finite list of well-defined instructions for accomplishing some task that, given an

initial state, will terminate in a defined end-state. In [Sud97], an algorithm is called effective if it

is:

• Complete: It produces an answer, either yes or no, to each question in the problem domain.

• Mechanistic: It consists of a finite sequence of instructions, each of which can be carried out

without requiring insight, ingenuity, or guesswork.

• Deterministic: If presented with identical input, it always produces the same result.

2Introduced by David Hilbert in 1928 at the Bologna International Congress, following up on his influential speech

in 1900 at the Second International Congress of Mathematicians in Paris. [Wik10, Hilbert’s problems].

2.2 Place/transition nets 17

A Turing machine is a theoretical computing machine developed by Alan Mathison Turing,

[Tur36]. Following [Wik10, Turing machine] and [KD99] it consists of:

• A tape which is divided into cells, one next to the other. Each cell contains a symbol

from a finite tape alphabet, which includes a special blank symbol. The tape represents

the computer’s memory and is assumed to be arbitrarily extendable to the left and to the

right, i.e., the Turing machine is always supplied with as much tape (memory) as it needs for

its computation.

• A head that can read and write symbols on the tape and move the tape left and right one (and

only one) cell at a time.

• A state register that stores the current state of the Turing machine. The possible states are

from a finite state alphabet and there is one special start state, start, with which the state

register is initialized, and a halt state, halt, which, when current, makes the Turing machine

stop its actions.

• An action table which is a finite number of instructions that, given the current state in the

state register and given the symbol the head is reading on the tape, tells the machine to do the

following in sequence: (i) write on the tape a symbol from the tape alphabet, (ii) move the

head one step to the left or the right, (iii) adopt a new current state at the state register. More

formally, the action table is a function F : Σ \ {halt} × Γ → Γ× {left, right} × Σ, where Σ

is the state alphabet and Γ is the tape alphabet.

Variations to this scheme have also been proposed. A Turing machine that is able to simulate any

other Turing machine is called a universal Turing machine.

The Church-Turing thesis, see, e.g., [Wik10, Church-Turing thesis], first proposed by Alonzo

Church in 1934 and reformalised in 1936 by Alan Turing, states that any ‘calculation’ that is

possible can be performed by a Turing machine, provided that sufficient time and memory are

available. This yields it is not possible to build a calculation device that can compute more functions

than Turing machines can, and hence that all ordinary computers are equivalent to each other in

terms of theoretical computational power (practical factors such as speed or memory capacity are

disregarded). It is important to note that although it is widely accepted, the Church-Turing thesis

cannot be mathematically proven; it is sometimes proposed as a physical law or as a definition.

A programming language3 that is capable of emulating a universal Turing machine is called

Turing-complete (or Turing-equivalent or Turing-powerful). Turing-completeness of a language is

3According to [Wik10, programming language], this is an artificial language that can be used to control the

behaviour of a machine, particularly a computer.

18 Petri nets literature

shown by providing a mapping from Turing machines into the language4. Rice’s theorem5 [Ric53]

states that all non-trivial questions about the behaviour or output of a Turing-complete language

are undecidable6. This makes Turing machines a formal framework that can be used to construct

solutions to decision problems.

Since P/T nets are not Turing-complete, the decidability of their properties was an open

problem, and it remained an open problem for a long time. However, many researchers contributed

to solving them, as will be shown below.

See [KD99] for a good overview of Turing machine issues.

Definition 2.15 (Reducible). A decision problem H is reducible to a decision problem H ′ if there

is a Turing machine that takes any question hi ∈ H as input and produces an associated question

h′i ∈ H ′ where the answer to hi can be obtained from the answer to h′i.

Definition 2.16 (Equivalent). A decision problem H is equivalent to a decision problem H ′ if H is

reducible to H ′ and vice versa.

Properties of P/T nets

There is much literature available on properties of P/T nets, and their associated decidability.

The remainder of this subsection briefly describes the properties most relevant to this thesis.

References used are [Mur89], [EN94], and [Esp98], which also provide details on other properties,

such as promptness, persistence, controllability, marking equivalence, and non-termination.

Boundedness A P/T net (N,M0) is bounded if its set of reachable markings R(N,M0) is finite.

In a bounded P/T net, each place can only have a finite number of tokens. A P/T net (N,M0) is

k-bounded if no reachable marking puts more than k tokens in any place, i.e., M(P) ≤ k for every

place P and every marking M ∈ R(N,M0). A P/T net is safe if it is 1-bounded. A P/T net N is

structurally bounded if it is bounded for any finite initial marking M0.

Boundedness is decidable [KM69]. There are several ways to decide boundedness, e.g., with

coverability graph (however, this is not the most efficient way [Mur89]):

1. A net (N,M0) is bounded iff ̟ does not appear in any coverability graph node.

2. A net (N,M0) is safe iff only 0’s and 1’s appear in coverability graph nodes.

4For an example of such mapping, see [Koo05, Section 4.6.2] or [She05, Page 161]
5After Henry Gordon Rice. See also [Wik10, Rice’s theorem] for a proof.
6Formulated in another way: According to Rice’s theorem, if C is a particular class of computable functions, and

there exist f1 and f2 such that f1 ∈ C and f2 /∈ C, then the problem of deciding whether a particular programme

computes a function in C is undecidable.

2.2 Place/transition nets 19

3. A net (N,M0) is structurally bounded iff the system of linear inequations y′ ·E ≤ 0, with E

the incidence matrix, has a positive solution, [EN94].

Algorithms to decide boundedness still require a lot of computational space, e.g., Lipton [Lip76]

proved that deciding boundedness for P/T nets requires at least space 2c
√
n, where c is some constant

and n is the size of the P/T netN . Rackoff [Rac78] proved that an upperbound for the space required

is 2cn logn. Here, the size of a P/T net is defined by Esparza [Esp98] as n = O(|P| · |T |), where |P|
is the number of places and |T | is the number of transitions.

Conservativeness is a special case of structural boundedness. If y = (y1, . . . , ym)
′ is a vector,

with yi corresponding to a positive integer weight for place Pi, then a P/T net is said to be

conservative with respect to y if y′ ·M = constant. A strictly conservative P/T net is conservative

with respect to the weighting vector (1, . . . , 1)′. A weighting vector for which the net is conservative

is found by solving y′ · E = 0, with y positive.

Reachability A marking M is reachable if there exists a firing sequence σ that brings the initial

marking M0 to M , i.e., if M0[σ〉M . The reachability problem of a P/T net is whether a given

marking M is reachable from the initial marking M0, i.e., whether M ∈ R(N,M0). Hack [Hac75]

and Keller [Kel75] observed that many other problems are equivalent to the reachability problem,

hence reachability became a central issue.

Reachability is decidable, [May81], [May84], [MM81], [Kos82]. If the P/T net is bounded, its

reachability graph exists and a marking M is reachable iff there exists a node labelled M in the

reachability graph. If the P/T net is not bounded, then one can use the coverability graph to find

a sufficient condition for reachability [Mur89]: If a marking M is reachable from M0 then there

exists a node labelled M such that M ≤M . However, because of the information lost by the use of

the symbol̟, in general, the reachability problem cannot be solved by using the coverability graph

alone. Murata [Mur89] gives a necessary condition for reachability, and a sufficient condition for

non-reachability, both based on the incidence matrix.

Liveness A P/T net (N,M0) is live if every transition can always occur again. There are different

levels of liveness for a transition T :

Definition 2.17 (Liveness).

• T is L0-live (dead) if T can never be fired in any firing sequence in L(N,M0).

• T is L1-live (potentially firable) if there is a firing sequence in L(N,M0) in which T can be

fired at least once.

• T is L2-live if, given any positive integer k, there is a firing sequence in L(N,M0) in which

T can be fired at least k times.

20 Petri nets literature

• T is L3-live if there is a firing sequence in L(N,M0) in which T appears infinitely often.

• T is L4-live (live) if T is L1-live in L(N,M) for every marking M ∈ R(N,M0).

A P/T net is said to be Lk live if every transition in the net is Lk-live, k = 0, 1, 2, 3, 4.

Murata [Mur89] notes that L4-liveness implies L3-liveness, L3-liveness implies L2-liveness, and

L2-liveness implies L1-liveness. A P/T net is called deadlock-free if from any reachable marking

at least one transition can always occur.

The liveness problem is recursively equivalent with the reachability problem [Hac75], [AK77]

and thus decidable.

Local properties Local properties of a system or operation can be modelled with a P/T net by

using only a few places or transitions, isolated from the rest of the P/T net. Below, an overview is

given of some of these properties, with a graphical illustration in Figure 2.4.

•

T1

T2

(a) sequential

execution

•

T1 T2 T3
(b) conflict

• • •

T1 T2 T3
(c) concurrency

•

T1 T2 T3

T4
(d) merging

• •

T1 T2 T3
(e) confusion

•

T1

•

T2

•

(f) mutual

exclusion

• •

T1

(g) synchronisation

•

•••

T1

P1

(h) limited

resources

Figure 2.4 Local P/T properties, from [VN92]

Sequential execution. In sequential execution, an event can only take place after the occurrence of

a specified other event. This can be modelled as in Figure 2.4 (a), where transition T2 can fire

2.3 Coloured Petri nets 21

only after the firing of transition T1. Also, this P/T net shows the causal relationship among

activities.

Conflict. A conflict between events occurs for example if only one of these events can occur at a

time and a choice has to be made. This can be modelled as in Figure 2.4 (b), where transitions

T1, T2 and T3 are in conflict. All are enabled but the firing of any leads to the disabling of the

other transitions.

Concurrency or parallellism. Besides events occurring sequentially, also events occurring con-

currently (in parallel) may exist. This can be modelled as in Figure 2.4 (c), where transitions

T1, T2 and T3 are concurrent (are enabled at the same time). A necessary condition for

transitions to be concurrent is the existence of a forking transition that deposits a token in

two or more output places.

Merging. If parts from several streams arrive for service at the same machine, these streams have

to merge. The resulting situation can be depicted as in Figure 2.4 (d).

Confusion. Confusion is a situation where concurrency and conflicts both exist, as in Figure 2.4

(e).

Mutual exclusion. In Figure 2.4 (f), the firing of transition T1 prevents the firing of transition T2

and vice versa.

Synchronisation. Sometimes parts in a system have to wait for other appropriate parts or for

information to arrive. The synchronization of activities can be captured by a transition of

the type shown in Figure 2.4 (g). Transition T1 will be enabled only when a token arrives into

the input place currently without token.

Limited resources. Situations of limited resources can be modelled as in Figure 2.4 (h), where

transition T1 can only fire if there are resources available in place P1.

Decidability of several of these local properties has been studied in, e.g., [Frö04].

2.3 Coloured Petri nets

The remainder of this chapter gives an overview of relevant Petri net classes (other than P/T nets)

found in the literature. The aim is to paint a picture of the origin of the Petri net class developed in

this thesis, i.e., SDCPNimt, as a mixture of existing features and new ones, and to identify techniques

for the analysis of Petri nets that could be borrowed or adapted to the analysis of SDCPNimt. The

main focus here is on classes that can be considered strict extensions of P/T nets, since this thesis

22 Petri nets literature

focuses on Petri nets powerful enough to model complex air transport operations. The current

section makes one exception for a class equivalent to P/T net, i.e., coloured Petri net, since many

extensions were derived from it.

Although, since their introduction, P/T nets were used and studied widely, in many occasions it

turned out that they were too low-level to manage more complex practical applications. Therefore,

different researchers started to develop their own Petri net classes. Most of these early developments

were designed for specific applications, and most analysis methods useful for one Petri net class

could not be used for another class. This triggered the development of Predicate/transition net

(PrT net) [GL81], [Gen86], which were constructed without any particular application in mind.

They can be related to P/T nets in a formal way hence allow generalisation of the basic concepts

and analysis methods. To overcome a few remaining technical problems in the generalisation of

analysis methods of place invariants and transition invariants, coloured Petri nets (CP81-nets) were

developed around 1980 by Kurt Jensen in his PhD work and first published in [Jen81]. The main

idea was directly inspired by PrT nets. Later, the advantages of PrT nets and CP81-nets were

combined, and the result is nowadays known as coloured Petri net (CP87-net or CPN).

The main feature of CPN is that tokens are no longer the indistinguishable black dots like they

are in P/T nets, but are distinguished by a colour or assigned value. The transitions and arcs observe

these colours and consider them in their firing. A primary advantage is that this may significantly

reduce the size of the Petri net, since multiple subgraphs that are of equal or similar structure can

now be folded into one subgraph containing multiple coloured tokens, where each colour refers to

an original subgraph.

The class of coloured Petri net is explained below:

Coloured Petri net (CPN). The tokens are coloured, i.e., they have a value that is an element of a

particular place-dependent colour type. The arcs are labelled by arc expressions, which are

similar to the arc weights of P/T nets, but are extended to the use of (weighted) colours7.

A transition is enabled if there are enough tokens (both in number and in colour) in its

input places to satisfy the arc expressions, and in addition these tokens satisfy a transition-

dependent Boolean guard. An enabled transition removes the input tokens that satisfy these

criteria, and produces output tokens that have colours according to the arc expressions on

its output arcs. The formal definition of CPN, see [Jen90], makes effective use of multisets,

which are sets in which the elements are distinguishable8.

Remark 2.2. Note that different variants of coloured Petri net are presented in literature, which

are still referred to as CPN. For example, [Zen85] and [YLB95] do not use the transition guard

7An example arc expression would be: ‘two tokens of colour a and 3 tokens of colour b’.
8In this formalism, for example, an arc expression ‘two tokens of colour a and 3 tokens of colour b’ is denoted by

2a+ 3b.

2.4 Timed Petri nets 23

(although [YLB95] does add it later as an additional feature of extended coloured Petri net), and

[Haa02] only allows transition enablings in one colour, rather than a binding of multiple colours.

2.4 Timed Petri nets

The concept of time was intentionally avoided in the original work of C.A. Petri, because of

the effect that timing may have on the behaviour of nets. For example, time constraints may

prevent certain transitions from firing, so that the behaviour of the net is not anymore defined by its

structure alone. However, there are also situations to be modelled in which time plays an important

role. A timed Petri net allows an operation to be described whose functioning is time dependent.

This would allow to measure additional properties such as durations of states or activities. The

pioneering works in the area of timed Petri nets were performed by Merlin and Farber [MF76], and

by Noe and Nutt [NN73]. Timing can be specified in several ways:

Deterministic. The associated time durations are predicted exactly. This has been investigated

by, e.g., [Ram73], [Sif77] and [RH80]. The analysis of deterministically timed Petri nets is

however tractable only in the case of special classes such as marked graphs.

Stochastic. Time durations are associated with a random variable. This concept was first

investigated independently from one another by Natkin [Nat80] and Molloy [Mol81] and this

was the origin for the emergence of stochastic Petri nets and their extensions as a principal

performance modelling tool.

Known to a lesser extent are two variants: Non-deterministic, studied by, e.g., [AHR00], which

assumes constraints on the time delays (e.g., ‘it takes less than 15 minutes to perform this action’),

usually by means of an interval, but no further assumptions. And possibilistic, studied by, e.g.,

[KL00], which exploits fuzzy logic to represent imprecise durations.

Time can be associated with transitions, places, tokens, arcs, or combinations:

Transition timed Petri nets. There are two possibilities associating time to transitions: delay time

(time that must occur between enabling and firing) or firing time (time associated to the

firing). A token may be reserved for the delay or firing of a transition or it can be non-

reserved. Used in, e.g., [Ram73].

Place timed Petri nets. Once a token has been added to a place, it will not contribute to enabling

any transition before the waiting time associated with that place has elapsed. Introduced in

[CR83].

24 Petri nets literature

Token timed Petri nets. The enabling of a transition depends on the time stamps of the tokens.

Such time stamp may be interpreted as the age of a particular token, i.e., how much time

elapsed since it was produced. Used in, e.g., [FM94].

Arc timed Petri nets. Delays are assigned to arcs. The delay is interpreted as a period of time that

must elapse until a token will arrive from a place to a transition or vice versa. Used in, e.g.,

[Han93].

Usually, in contrast with most non-timed Petri nets, functioning at maximal speed is considered.

This means that a transition is fired as soon as it is enabled, except possibly if this transition is in

conflict with another, [DA94]. For an overview of issues related to timed Petri nets, see, e.g.,

[AHR00].

Notable examples of specific timed Petri net classes are:

Stochastic Petri nets (SPN). First studied by [Mol81], [FN84] and [ABB+85]. The transition

firing durations are associated with random variables. The reachability graph of an SPN

is identical to the one of the underlying P/T net, hence all results available for the structural

analysis of P/T nets can be applied to SPN. If the stochastic durations follow exponential

distributions, see, e.g., [Ajm89], the marking of the stochastic Petri net is a homogeneous

Markovian process, and the reachability graph of the SPN is equivalent to a homogeneous

(continuous-time) Markov chain.

Generalised stochastic Petri nets (GSPN). This is a widely studied class, see, e.g., [ACB84],

[ABC+91], [ABD98], [Bal01] and [Haa02]. Each transition is either timed (firing with a

particular exponentially distributed delay) or immediate (firing without delay), and each is

assigned a priority level, where timed transitions have the lowest priority level. Weights of

immediate transitions determine who will fire in case two or more transitions with the same

priority level are simultaneously enabled. Due to this structure, the probability that any two

transitions fire at the same time is zero. Another feature of GSPN is that some of its arcs

are inhibitor arcs9, i.e., the transition connected to such arc can only be enabled if the input

place connected to the arc does not have a token. The reachability set of a GSPN is identical

to the one of the underlying P/T net with inhibitor arcs and priorities. Therefore some of

the structural properties valid for the basic underlying P/T net, such as place invariants,

are retained by the GSPN. Usually, the GSPN reachability graph distinguishes the tangible

markings (in which only timed transitions are enabled) from the vanishing markings (in

which an immediate transition is enabled).

Decidability of GSPN properties has also been studied. However, the use of the inhibitor arcs

make GSPN to be Turing-complete (see Page 17), see [Age74]. It was proven in [Cia87] that

9Introduced by [AF73] and sometimes referred to as test arcs or zero test arcs.

2.5 Hybrid Petri nets 25

GSPN are also Turing-complete if the set of inhibitors is empty. It was proven in [ACB84]

that GSPNs are equivalent to continuous-time Markov chains (see Figure 1.1), and this allows

studying their properties despite the Turing-completeness.

Deterministic and stochastic Petri nets (DSPN). Developed by [AC87]. DSPN are an extension

of GSPN (see Figure 1.1) that allows firing delays of timed transitions to be either constant

or exponentially distributed random variables. Under the condition that in each reachable

marking only one deterministic transition is enabled, analysis of DSPN can be by means of

its embedded Markov chain, see [BSC+93] and [CL93].

Coloured stochastic Petri nets (CSPN). In [Zen85], coloured stochastic Petri net are defined as

a class that uses elements from both coloured Petri net and stochastic Petri net, see also

[Haa02]. The transition firing rate may be dependent on the colour fired and on the current

marking.

2.5 Hybrid Petri nets

In a hybrid Petri net, continuous and discrete aspects are combined in an integrated way. The

discrete aspect is usually similar to the ‘usual’ Petri net types; the continuous part can generally be

traced back to one of the two following base forms:

Fluid tokens. Tokens are not discrete ‘bullets’ but are more like fluids residing in the places: a

place can contain a real-valued, non-negative, amount of token.

Coloured tokens. The tokens have a value (or colour) that is from a ‘continuous set’, e.g., is a

vector of real numbers.

The discrete and continuous aspects can be mixed or combined in many different ways. Reference

[Giu06] maintains a collected list of references in the field of hybrid Petri nets, grouped on the basis

of the models used. Reference [AKZ98] gives a brief overview of hybrid control systems, including

hybrid Petri net classes.

Notable examples of specific hybrid Petri net classes based on fluid tokens are:

Continuous Petri nets (ContPN). Proposed by [DA87]. The marking of a place is a non-negative

real and firing is carried out like a continuous flow. A continuous Petri net may either be

autonomous (no time involved) or with firing speeds associated with the transitions. In the

latter case, a transition can be strongly enabled (i.e., its input places are not empty and it can

fire at maximum speed) or weakly enabled (i.e., the input places that are empty are currently

being fed by other transitions). Two main variations are constant speed continuous Petri

26 Petri nets literature

net, [Dav97], in which weakly enabled transitions cannot fire until they are strongly enabled,

and variable speed continuous Petri net, in which a weakly enabled transition is fired at the

lower speed of the other transition that is feeding the input place. Decidability questions for

continuous Petri nets have been studied in, e.g., [SR02].

Hybrid Petri nets (HPN). Proposed by [LAD91] as an extension of continuous Petri net. HPN

have discrete places that contain an integer number of tokens and continuous places that

may contain a real amount of tokens. The arcs have positive weights. A state equation for

the marking of the net can be determined, which uses the number of times each discrete

transition fires and the instantaneous firing speeds associated with continuous transitions. In

hybrid timed Petri net as defined in [TTV06], discrete transitions, when enabled, fire after a

(deterministically determined) delay; several analysis problems for hybrid timed Petri nets,

like P -invariants, are studied.

Fluid stochastic Petri nets (FSPN). Proposed in [TK93]. FSPN move fluid tokens between

continuous places and discrete tokens between discrete places. There are immediate

transitions and timed transitions. The enabling of either type is controlled only by tokens in

the discrete input places, and the firing of tokens from and to discrete places is as for ordinary

Petri nets. An enabled timed transition removes fluid tokens from its continuous input places

after an exponential delay time, and at a rate which is dependent on the connecting arcs and

on the current marking of all discrete places in the net. A partial differential equation can

be determined which specifies the change of fluid tokens on all continuous places, see also

[GSB99]. The reachability graph associated with the discrete Petri net part is equivalent to a

continuous-time Markov chain.

Differential Petri nets. Described in [DK96] and [DK98]. These have discrete places (with a

non-negative integer marking), differential places (with a real-valued marking), discrete

transitions and differential transitions. The marking of a differential place can also be

negative, which allows ‘negative amounts’ of fluid token in a place. Weights of arcs

connected to differential places are real numbers which may also be negative. A discrete

transition is enabled if each input place has a non-reserved marking satisfying the input

arc weights; it then reserves the enabling input tokens and fires after a transition-dependent

constant delay. A differential transition is enabled if each discrete input place has a marking

that satisfies the input arc weights; its firing yields a change of marking in the differential

places equal to the speed of the transition, times the weight of the corresponding arc. This

speed may be a constant, a linear combination, or a non-linear function of the markings

connected to the transition, and may also be negative. Effectively, this scheme can represent

any form of discrete approximation of an ordinary differential equation. Reference [DK98]

2.5 Hybrid Petri nets 27

also discusses the evolution graph and some properties of differential Petri nets, like liveness.

Notable examples of specific hybrid Petri net classes based on coloured tokens are:

Extended coloured Petri nets (ECPN). Introduced in [YLB95]. The token colours are real-

valued vectors following difference equations. The token colour is updated in an external

loop around its residence place by an additional updating transition.

High-level hybrid Petri nets (HLHPN). Introduced in [GU96], [GU98]. An HLHPN combines

hybrid Petri net with coloured Petri net. Discrete places have a marking that is a subset of the

natural numbers, continuous places have a marking that is a real-valued vector. A discrete

transition is enabled if the tokens in the input discrete places satisfy the input arc expressions

and if each input continuous place contains a token of a particular value. It then fires after

it has remained enabled during a transition-specific time delay. A continuous transition is

enabled if the tokens in its input discrete places satisfy the arc expressions; the marking

of continuous places does not affect its enabling. An enabled continuous transition fires

continuously with a particular velocity, and the marking of its output continuous places is

changed according to a differential equation which may be dependent on the current marking

and on an external continuous input.

Hybrid high-level Petri nets (HyNets). Introduced in [Wie96a] and [Wie96b]. HyNets are an

integration of coloured Petri nets, differential algebraic equations and object-oriented

concepts. There is only one class of places, but there are discrete transitions and continuous

transitions, continuous undirected arcs and discrete directed arcs. The set of discrete arcs is

divided into ordinary arcs, enabling arcs (tokens should be present in input place of transition,

but are not removed when transition fires) and inhibitor arcs. Places are labelled by a place

type (Boolean, real, user defined, etc.) and a capacity (a positive integer or ∞). A discrete

transition that has input tokens that satisfy the arc expressions, fires after a random delay,

provided the output places have enough free capacity. During this delay, the input tokens are

not reserved and may be consumed by other discrete transitions. A continuous transition fires

without delay and continuously changes bound token colours according to its firing action.

The firing action may be an algebraic equation (assigning a value to a token) or a differential

equation (which changes values). The tokens stay in their places during firing, until the

activation condition is no longer fulfilled or a discrete transition steels them away. Rules are

available that decide how to proceed in case of conflicts between enablings or firings.

Particle Petri net. Introduced by [LT05]. Patricle Petri nets are composed of a numerical part and

a symbolic part. The numerical part is similar to differential Petri net: token colours are

solutions to differential equations associated with places. The symbolic part is a possibilistic

28 Petri nets literature

Petri net, in which a token in a place is associated with a ‘possibility value’, say, µ, denoting

the ‘possibility’ that the token is really in this place. If this place is input to a transition that

has a possibility of firing equal to λ, then after pseudo-firing of this transition, the output

place of the transition has a token with possibility λµ.

2.6 Compositional specification

The development and verification of a complete model for very complex operations is generally

a difficult task. To tackle the development problem it can be split up into sub-problems, after

which the complete model is composed of the submodels. The different submodels can be verified

separately, after which the results are translated to the complete model. The task of how to

decompose the development problem in order to handle its complexity can be referred to as

compositional specification; in [VJMV04], it is referred to as modularity. Generally, it can be

addressed in two ways, although combinations are also possible:

Vertically. The operation is first modelled at a high level, after which the details are addressed by

‘zooming in’; this is sometimes referred to as unfolding. The other way around (zooming

out, folding) is also possible. This hierarchical modelling is generally seen as a set of

representations of a complex system made at different levels of detail.

Horizontally. The operation is divided into parts, which are modelled individually, and next

coupled at the same level. Horizontal decomposition is generally used if an operation consists

of multiple ‘agents’ that each act individually but interact at certain instances.

One of the issues studied in this area is the conservation of properties, such as boundedness, by

composition of Petri net models.

Notable examples of specific Petri net classes that address the compositionality issue of Petri

nets are:

Hierarchical coloured Petri nets (HCPN). Described in [HJS90] and [Jen90]. An HCPN con-

sists of a finite set of pages, where each page is a coloured Petri net (CPN). These individual

CPNs are related in different ways, known as the hierarchy constructs, see, e.g., [NH04]:

Substitution node. This is a place or a transition that is related to a more complex CPN,

called subpage, which gives a more precise and detailed description of the activity

represented by the substitution node. Input socket nodes and output socket nodes in

the substitution node communicate with port nodes in the subpage.

2.6 Compositional specification 29

Invocation node. In contrast to substitution nodes, the invocation nodes are not substituted

by their subpage, but their occurrence triggers the creation of a new instance of the

subpage. These subpage instances are executed concurrently with the other page

instances in the model, until a specified exit condition is reached. The invocation

hierarchy is allowed to contain circular (i.e., recursive) dependencies.

Fusion set. Fusion allows to conceptually fold a set of nodes into a single node without

graphically having to represent them as a single object.

Synchronous interpreted Petri net (SIPN). Proposed in [FAP97]. An SIPN is a C/E net (see

Page 9) with guarded transitions and synchronous transitions firing, and with inhibitor arcs

and enabling arcs. It combines horizontal and vertical hierarchy constructs. The vertical

hierarchy is modelled by macroplaces or macrotransitions, which can be exploded (or

imploded) to form (or hide) a complete sub-Petri net. The horizontal hierarchy is by enabling

arcs which model synchronisation and by inhibitor arcs which model priority.

Modular multilabelled nets (M-nets). Developed in [BFF+95]. M-nets are PrT nets (see Page

22) that allow vertical unfolding of places and transitions, as well as horizontal composition

of large Petri nets from smaller components. Unfolding associates a more elementary M-net

to every M-net, as well as a marking of the former to every marking of the latter. Horizontal

operations, such as copying of places, multiplying sets of places, adding and removing places,

unions of nets, synchronisation, and restriction, are defined and are shown to be consistent

with the vertical unfoldings in the sense that the unfolding of a composite net is equal to the

composition of the unfoldings of its components.

In [FG97], the definition of M-nets is extended with non-singleton type (to handle identifier

sets), transition refinement, and a relabelling function, to cover issues like recursion, global

variables, and different types of parameter passing. The extended M-net is referred to as

B(PN)2 (basic Petri net programming notation).

Petri net components. A Petri net component, as introduced by [Kin97], is a Petri net equipped

with input places and output places, which represent the interface of the component to other

components. Each component is surrounded by a box, the input places and output places are

located at the border of the surrounding box and are labelled by an arrowhead. Input places

have an arrowhead that points into the box, the environment may put tokens in them, and the

component itself may remove tokens from them. Output places have an arrowhead pointing

in the opposite direction, the environment may remove tokens from them and the component

may put tokens in them.

Higher-level Petri nets as developed in [JE02], also use components, where a component has

30 Petri nets literature

parameters, and can be instantiated and connected to the environment through ports. Input

ports may be connected to places and output ports to transitions. To be able to connect

components, places in a Petri net are also granted ports and they become container places. If

a transition produces a token, that token is not put onto the container place itself but rather on

its input port.

Modular construction. Reference [FKK97] constructs an overall Petri net from Petri net modules

by using several module coupling mechanisms. The base is generalised stochastic Petri

net (GSPN) with enabling arcs. The model is built in an incremental manner. First, one

component is described by one Petri net module. At each following step, a new component

is added and the Petri net model is updated by taking into account assumptions, interactions

and influences of the new component on the already integrated components. Guidelines for

the modular construction are:

Modules. Each module describes the behaviour of one component. It consists of internal

places and transitions coupled by arcs. Each module contains only one token, and in

order to maintain this basic rule, each internal transition has a single internal input place.

In addition, inhibitor arcs or enabling arcs are not used within a module, module folding

is recommended, and immediate internal transitions are avoided.

Module coupling mechanisms. The interactions between components are implemented by

three basic module coupling mechanisms: marking tests (couplings of modules by

inhibitor arcs or enabling arcs, which do not change the marking of the places involved

in the test), common transitions (which are shared by several modules and which

produce a token back into a module if they have removed one), and interconnection

blocks (which are built of one in-place and a set of (immediate) out-transitions, and

which connect one or several initialising modules to one or several target modules).

Block decomposition. Blocks are decomposed into more elementary blocks in order to

ensure reusability.

2.7 Concluding remarks

This chapter gave an overview of Petri net literature, to illustrate how a variety of Petri net

classes has been developed in the literature by incorporation of powerful features, to paint a picture

of the origin of the Petri net classes developed in this thesis, as a mixture of existing features and

new ones, and to present techniques that could be borrowed or adapted to their analysis.

The class of P/T nets appears to be the most widely studied class, and a lot of research results are

available on their properties and their decidability. Several of these properties, like reachability and

2.7 Concluding remarks 31

boundedness, will be particularly relevant when modelling large-scale stochastic hybrid systems,

since they are related to aspects of manageability of the models.

The Petri net classes beyond P/T nets provide several features to increase the modelling power

of Petri nets:

• Coloured nets (in which the tokens are distinguished by values) are a mechanism to reduce

the number of places in a Petri net graph; similar subgraphs can be folded into one graph by

distinguishing the tokens by colours.

• Timed nets (in which the tokens are temporarily held at places or transitions before being

fired) are a very useful extension when modelling systems in which the time element is

important. Of particular interest are models equivalent to continuous-time Markov chains,

since for these, many analysis instruments are available. An advantage of using Petri nets

for modelling rather than Markov chains directly, is that Petri nets allow the use of multiple

tokens and allow transitions to have multiple input and output places, so that a large state

space may be modelled with only a few places.

• Hybrid Petri nets (which combine discrete and continuous net elements) significantly increase

the modelling power towards systems which combine both discrete and continuous elements.

Hybrid Petri nets show great potential as modelling formalism for air transport operations,

since these operations typically combine discrete elements (e.g., aircraft modes of operation)

and continuous process elements (e.g., aircraft position and velocity). In addition, as is noted

by [DFGS07], the existence of continuous parameters allows to speed up optimisation and to

perform sensitivity analysis.

• And finally, classes that exploit the compositional specification of Petri nets provide features

that start modelling locally and next compose large scale nets from local nets. For

the modelling of complex air transport operations, the use of compositional specification

constructs is essential. These allow to break up the model development task into subtasks,

thus increasing manageability. It may even be possible to have different submodels

constructed (and verified) by different model developers, if a variety of expertise is called

for.

The classes of stochastically and dynamically coloured Petri net (DCPN, SDCPN and SDCPNimt),

developed in Chapters 3, 4 and 5, combine these features in such a way that the modelling power is

as rich as possible, with the additional feature that equivalence relations with classes of stochastic

hybrid process (i.e., PDP and GSHP) are proven to exist. In fact, during the early development

stages of DCPN, a literature search was made to see if an existing hybrid Petri net class could be

found that satisfied the selection criteria identified. Unfortunately, although several hybrid Petri net

32 Petri nets literature

classes could be linked to continuous-time Markov processes, the link with PDP was not proven,

and DCPN was developed as a new addition to the class of hybrid Petri net.

Remark 2.3. It is noted that many of the Petri net classes described in this chapter have also been

used in the air transport operations applications area on their own. For example,

• In [Obe06] and [OÜRS07], coloured Petri nets (CPN) are used to model and analyse the

planning process for airplane arrivals in air traffic control.

• Kanoun and others, e.g., [KO00], [FKK98], use generalised stochastic Petri net (GSPN) for

evaluation of service degradation of CAUTRA (coordination automatique du trafic aérien),

an automated computing system for air traffic control in France. Emphasis is on interaction

between hardware and software components and on modular construction.

• Lesire and Tessier [LT05] use particle Petri nets in a simulation of the Toulouse airport

approach procedure.

• Villani and others [VJMV04] use differential predicate transition net for the modelling of an

aircraft landing system.

Chapter 3

Dynamically coloured Petri nets

3.1 Introduction

A piecewise deterministic Markov process (PDP)1, as developed by Mark Davis in [Dav84] and

[Dav93], is a stochastic hybrid process that, most of the time, follows the solution of an ordinary

differential equation; this solution is referred to as the flow. At some times, however, the process

may jump. Such jumps may be spontaneous, i.e., occurring at a random time, or forced, i.e.,

occurring when the flow hits the boundary of a predefined area. The value of the PDP right after

the jump is determined by a particular PDP transition measure, and from this new value onwards,

the process again follows the solution of an ordinary differential equation that may be different

from the previous one. Between jumps, the PDP is deterministic, which explains the ‘piecewise

deterministic’ part of the name PDP, and at all times, the process value in the future is not dependent

on the history but only on the present state, which explains the ‘Markov’ part. PDP is also a hybrid

process, since its state space is a combination of continuous values, i.e., the flow, and discrete ones,

i.e., the discrete set of differential equations to choose from. PDP is (according to [Dav84]) the

most general class of continuous-time Markov processes that include both discrete and continuous

processes (except diffusion). It has a unique solution and strong Markov properties. In [Dav93] the

stochastic analysis power is explained by the derivation of the PDP extended generator, the strong

Markov property and the ‘right process’ property.

A dynamically coloured Petri net (DCPN) is a stochastic hybrid Petri net in which each token

has a value (a colour) that is a Euclidean vector. More precisely, the value of a token is an element

of Rn, where R is the set of real numbers, and n is a natural number that is determined by the place

in which the token resides. The value (colour) of a token may change through time (dynamically)

while the token is residing in its place, which explains the ‘dynamically coloured’ part of the name.

This value follows the solution of a place-dependent ordinary differential equation. There are three

1We adopt the abbreviation used by Davis, i.e., PDP rather than PDMP.

34 Dynamically coloured Petri nets

types of arcs: ordinary arcs (which are as for other Petri net classes), inhibitor arcs (a transition

can only be enabled if the input place connected to the inhibitor arc does not contain a token)

and enabling arcs (tokens are not removed from the connected input place if the transition fires).

There are three types of transitions: Immediate transitions may fire as soon as they have a sufficient

number of tokens in their input places; for delay transitions, the firing can only take place after a

transition-dependent random delay has passed; and finally, for guard transitions, the combination

of colours of the input tokens needs to reach a threshold value before the transition can fire. The

firing of immediate transitions has priority over the firing of delay or guard transitions. The number

of tokens fired (zero or one token is fired per outgoing arc), and their colours are determined by

a transition-dependent probabilistic measure named firing measure, which uses the colours of the

input tokens as input. The marking of a DCPN at a particular time is determined by the colours

of all tokens residing in the DCPN at that time, and the places in which they reside, in a particular

uniquely defined order. The modelling and specification power is revealed in, e.g., [BKKB04]

and numerous other studies, in which DCPN have been used successfully to model large scale air

transport operations involving multiple humans, technical systems, procedures, etc.

DCPN combine different features of already existing Petri net classes, such as those described

in Chapter 2. The unique feature is the existence of equivalence relations with PDP. The existence

of such equivalence relations allows combining the modelling and specification power of Petri nets

with the stochastic analysis power of PDP.

This chapter is organised as follows: Section 3.2 provides a few preliminaries and definitions on

stochastic processes that are necessary to properly understand the theorems proven in this chapter.

Section 3.3 defines DCPN. Section 3.4 describes PDP. Section 3.5 shows that for each arbitrary PDP

we can construct an equivalent DCPN process. Section 3.6 shows that for each arbitrary DCPN we

can construct an equivalent PDP. Section 3.7 discusses the conditions under which the equivalence

relations hold true. Finally, Section 3.8 draws conclusions. For illustrative examples we refer to

Chapter 6.

3.2 Preliminaries

This thesis assumes that the reader is familiar with the basics and notational conventions of

stochastic processes. For convenience, a brief introduction is given in Appendix A. This section

provides a few additional preliminaries and definitions on stochastic processes that are necessary to

properly understand the theorems proven in this chapter and Chapter 4.

Consider a probability space (Ω,ℑ,P), where Ω is the sample space, ℑ is a σ-algebra on Ω, and

P is a probability measure. Also consider an index set T and a measurable space (E,B(E)), where

B(E) is the Borel σ-algebra on E, i.e., the smallest σ-algebra that contains all open subsets of E.

3.2 Preliminaries 35

Throughout this thesis, we take T = R+ = [0,∞), i.e., the positive time line.

A stochastic process with index set T and state space (E,B(E)) defined on a probability space

(Ω,ℑ,P) is a function X : T × Ω → E such that for each t ∈ T, X(t, ·) : Ω → E is an E-

valued random variable, i.e., {ω | X(t, ω) ∈ B} ∈ ℑ for every B ∈ B(E). Generally, X(t, ω)

is denoted as Xt(ω) and X(t, ·) is denoted as X(t) or as Xt. The function X(·, ω) (also denoted

{Xt(ω); t ∈ T}) is called the sample path of the process at ω. A stochastic process may also consist

of more than one component, e.g., {X1
t , X

2
t }.

For 0 ≤ t1 < t2 < · · · < tk, let µt1,...,tk be the probability measure on B(E) × · · · × B(E)
defined by µt1,...,tk(B) = P{(X(t1), . . . , X(tk)) ∈ B}, with B ∈ B(E) × · · · × B(E). The

probability measures {µt1,...,tk | k ≥ 1, 0 ≤ t1 < t2 < · · · < tk} are called the finite-dimensional

distributions of X .

• A stochastic process Y is said to be a version of X (and X is a version of Y) if X and Y have

the same finite-dimensional distributions.

• A stochastic process Y is said to be a modification of X if X and Y are defined on the same

probability space and for each t ≥ 0, P{X(t) = Y (t)} = 1.

• Two stochastic processes X and Y are said to be indistinguishable if there existsN ∈ ℑ such

that P{N} = 0 and X(·, ω) = Y (·, ω) for all ω /∈ N .

If two processes are indistinguishable, then they are also modifications. If two processes are

modifications, they are also versions. The term versions is often replaced by identically distributed

or probabilistically equivalent. The term indistinguishable is often replaced by pathwise equivalent.

This chapter will prove that each arbitrary PDP can be mapped to a DCPN process which is

pathwise equivalent to the original PDP, by which we mean that the PDP and this DCPN process

are indistinguishable. In addition, the chapter will prove that each arbitrary DCPN can be mapped

to a PDP which is probabilistically equivalent to the original DCPN process, by which we mean

that the DCPN process and this PDP are versions.

Both PDP and DCPN will be defined by means of an execution of a stochastic hybrid system,

where,

• A stochastic hybrid system is a collection of objects that specify a hybrid state space, a

continuous flow mechanism and a hybrid jump mechanism.

• An execution of the stochastic hybrid system defines a sample path X(·, ω) of a stochastic

hybrid process for any arbitrary ω ∈ Ω. This means, for arbitrary ω ∈ Ω, it defines

an initiation X(0, ω), an increasing sequence of random variables τi : Ω → [0,∞] that

characterise the times of hybrid jumps, the continuous flow {X(t, ω); t ∈ (τi−1, τi)} between

jumps, and the hybrid state at each jumpX(τi, ω). This definition is in line with the definition

provided in [LJSE99] for execution of hybrid automata.

36 Dynamically coloured Petri nets

Throughout this chapter and the next one, we need to characterise random vectors according to

given probability measures. The procedure is explained for two special cases and one general case

below:

• Suppose X is a random variable X : Ω → R with a corresponding probability distribution

function FX : R → [0, 1], i.e., FX(x) , P{ω ∈ Ω | X(ω) ≤ x} (or FX(x) = P{X ≤
x} for short). Then X(ω) is characterised in terms of FX as follows: Consider a random

variable U : Ω → [0, 1] which has a uniform distribution on the unit interval [0, 1], i.e., for

all u ∈ [0, 1], P{U ≤ u} = u. Then X(ω) = F qf
X (U(ω)), where F qf

X : [0, 1] → R is defined

by F qf
X (u) , inf{x | FX(x) ≥ u}. This equality is due to P{U ≤ u} = u and therefore

P{FX(x) ≥ U} = P{U ≤ FX(x)} = FX(x) = P{X ≤ x}. In statistics, F qf
X is referred to

as quantile function, see, e.g., [Mad02].

• Similarly, if X is a random variable with a corresponding survivor function ΓX(x) = 1 −
FX(x), then X(ω) = ΓqfX (U(ω)), where ΓqfX is defined by ΓqfX (u) , inf{x | ΓX(x) ≤ u}.

This is due to U ∼ U [0, 1] then 1− U ∼ U [0, 1].

• More generally, if X is a random vector with a corresponding probability measure Ψ on

a Borel subset of E, then there exists a measurable function Ψqf : [0, 1] → E such that

µL{u | Ψqf (u) ∈ A} = Ψ{X ∈ A}, where µL is the Lebesgue measure. With this, X(ω) =

Ψqf (U(ω)). The existence of this Ψqf is proven in [Dav93, Corollary 23.4].

Notice that each of the characterisations above is in terms of uniform U [0, 1] random variables.

3.3 Dynamically coloured Petri nets

This section presents a definition of dynamically coloured Petri net (DCPN). Where possible,

the notation introduced by Jensen [Jen92] for coloured Petri net is used.

Definition 3.1 (Dynamically coloured Petri net). A DCPN is a collection of elements (P , T , A, N ,

S, C, I, V , G, D, F), together with a DCPN execution prescription which makes use of a sequence

{Ui; i = 0, 1, . . .} of independent uniform U [0, 1] random variables and five rules R0–R4 that solve

enabling conflicts.

The execution of a DCPN defines the sample path of a stochastic process which is a hybrid

random vector formed by the collection of colours of all tokens, and by the places in which these

tokens reside. Informally, this is explained as follows: A DCPN graph is formed by the places

P , the transitions T and the arcs A, which are connected to one another as specified by the node

function N . The initial marking I puts an initial set of tokens in some or all of the DCPN places,

and gives these tokens a value (a colour). The state space of the colour of a token in place P ∈ P is

C(P) ∈ S. From the initial time onwards, the colour CP
t of a token in place P at time t equals the

3.3 Dynamically coloured Petri nets 37

trajectory solution of an ordinary differential equation formed by the drift coefficient VP ∈ V , i.e.,

dCP
t = VP (CP

t)dt. A transition T ∈ T is enabled if it has tokens in each of its input places, and if

a second condition holds true, which is defined by the DCPN elements G and D and which uses the

colours of the input tokens. An enabled transition removes the input tokens, and produces coloured

output tokens defined according to FT ∈ F . Each new token follows the trajectory solution of the

ordinary differential equation connected to the place in which it then resides, until it is removed by

a transition that is enabled.

The formal DCPN definition provided below is organised as follows:

• Section 3.3.1 defines the DCPN elements (P , T , A, N , S, C, I, V , G, D, F).

• Section 3.3.2 explains the DCPN execution.

• Section 3.3.3 explains how the DCPN execution defines a unique stochastic process.

3.3.1 DCPN elements

The DCPN elements (P , T , A, N , S, C, I, V , G, D, F) are defined as follows:

• P is a finite set of places.

• T is a finite set of transitions, such that T ∩ P = ∅. The set T consists of 1) a set TG of

guard transitions, 2) a set TD of delay transitions and 3) a set TI of immediate transitions,

with T = TG ∪ TD ∪ TI , and TG ∩ TD = TD ∩ TI = TI ∩ TG = ∅.

• A is a finite set of arcs such that A ∩ P = A ∩ T = ∅. The set A consists of 1) a set

AO of ordinary arcs, 2) a set AE of enabling arcs and 3) a set AI of inhibitor arcs, with

A = AO ∪AE ∪AI , and AO ∩AE = AE ∩AI = AI ∩AO = ∅.

• N : A → P×T ∪T ×P is a node function which maps each arc A ∈ A to a pair of ordered

nodes N (A), where a node is a place or a transition2. The place of N (A) is denoted by

P (A), the transition of N (A) is denoted by T (A), such that for all A ∈ AE ∪ AI : N (A) =

(P (A), T (A)) and for allA ∈ AO: either N (A) = (P (A), T (A)) or N (A) = (T (A), P (A)).

Further notation:

– A(T) = {A ∈ A | T (A) = T} is the set of arcs connected to transition T ,

Ain(T) = {A ∈ A(T) | N (A) = (P (A), T)} is the set of input arcs of T ,

Aout(T) = {A ∈ A(T) | N (A) = (T, P (A))} is the set of output arcs of T ,

Ain,O(T) = Ain(T) ∩ AO is the set of ordinary input arcs of T ,

Ain,OE(T) = Ain(T) ∩ {AE ∪AO} is the set of input arcs of T that are either ordinary

or enabling, and

2Note that the DCPN arcs have no arc weights like P/T nets have, but this node function definition leaves the

freedom to define multiple arcs between the same pair of transition and place or place and transition (except if an

inhibitor arc is involved).

38 Dynamically coloured Petri nets

– P (A⊂) = {P (A);A ∈ A⊂} is the multi-set of places connected to the subset of arcs

A⊂ ⊂ A. If there are Ai ∈ A⊂ and Aj ∈ A⊂ for which P (Ai) = P (Aj), then this place

P (Ai) = P (Aj) occurs in the set P (A⊂) multiple times.

Finally, {Ai ∈ AI | ∃A ∈ A, A 6= Ai : N (A) = N (Ai)} = ∅, i.e., if an inhibitor arc points

from a place P to a transition T , there is no other arc from P to T .

• S ⊂ {R0,R1,R2, . . .} is a finite set of colour types, with R0 , ∅.

• C : P → S is a colour type function which maps each place P ∈ P to a specific colour

type in S. Each token in P is to have a colour in C(P). Since C(P) ∈ {R0,R1,R2, . . .},

there exists a function n : P → N such that C(P) = Rn(P). If C(P) = R0 , ∅ then a

token in P has no colour. Further notation: if P (A⊂) contains more than one place, e.g.,

P (A⊂) = {Pi1 , . . . , Pik}, then C(P (A⊂)) is defined by C(Pi1) × · · · × C(Pik), where ×
denotes Cartesian product.

• I : N|P| × C(P)N → [0, 1] is a probability measure, which defines the initial marking of

the net: for each place it defines a number ≥ 0 of tokens initially in it and it defines their

initial colours. Here, N|P| denotes the space of |P|-dimensional non-negative finite integer

vectors N|P| , {(m1, . . . , m|P|);mi ∈ N, mi < ∞, i = 1, . . . , |P|} and C(P)N denotes a

set of Euclidean spaces defined by C(P)N , {C(P1)
m1 × · · · × C(P|P|)

m|P| ;mi ∈ N, mi <

∞, i = 1, . . . , |P|}, where C(Pi)mi , Rmin(Pi) for all i = 1, . . . , |P|, where P is denoted

P = {P1, . . . P|P|}.

It is assumed that all tokens in a place are distinguishable by a unique identification tag which

translates to a unique ordering/listing of tokens per place.

• V = {VP ;P ∈ P, C(P) 6= R0} is a set of token colour functions. For each place P ∈ P
for which C(P) 6= R0, it contains a measurable mapping VP : C(P) → C(P) that defines

the drift coefficient of a differential equation for the colour of a token in place P . It is

assumed that VP satisfies conditions that ensure a unique solution of the differential equation

dCt = VP (Ct)dt.3

• G = {GT ;T ∈ TG} is a set of transition guards. For each T ∈ TG, it contains a

transition guard GT , which is an open subset in C(P (Ain,OE(T))) with boundary ∂GT . If

C(P (Ain,OE(T))) = R0 then ∂GT = ∅.4 There is no requirement that GT be connected.

3Note that in earlier DCPN definitions, e.g., [EB05], [EB06], it was assumed that VP satisfies local Lipschitz

condition. This condition has now been relaxed to existence and uniqueness of solution(s) of the related differential

equation(s).
4In earlier DCPN definitions, the transition guard was defined as a Boolean function that evaluated to True if the

boundary of an open subset was hit by the input token colours. Without losing generality, the transition guard is now

defined to be the open subset itself.

3.3 Dynamically coloured Petri nets 39

• D = {DT ;T ∈ TD} is a set of transition delay rates. For each T ∈ TD, it contains a locally

integrable transition delay rate DT : C(P (Ain,OE(T))) → R+. If C(P (Ain,OE(T))) = R0

then DT is a constant function. 5

• F = {FT ;T ∈ T } is a set of firing measures. For each T ∈ T , it contains a firing measure

FT : ({0, 1}|Aout(T)| × C(P (Aout(T)))) × C(P (Ain,OE(T))) → [0, 1], which generates the

number and values of the tokens produced when transition T fires, given the value of the

vector ∈ C(P (Ain,OE(T))) that collects all input tokens.

Here, {0, 1}|Aout(T)| , {(e1, . . . , e|Aout(T)|); ei ∈ {0, 1}, i = 1, . . . , |Aout(T)|}, and if

P (Aout(T)) = {PO1, . . . , PO|Aout(T)|
} then {0, 1}|Aout(T)|×C(P (Aout(T))) , {(eT , aT); eT =

(e1, . . . , e|Aout(T)|), ei ∈ {0, 1}, aT ∈ Rnout(T), nout(T) =
∑|Aout(T)|

i=1 ei · n(POi
)}. Hence, for

i = 1, . . . , |Aout(T)|, if ei = 1 then the ith output place POi
of T gets a token with a value

in Rn(POi
) and if ei = 0 then the ith output place of T does not get a token. The vector eT

then denotes which output places get a token and the vector aT collects all colours of tokens

produced.

For each fixed H ⊂ {0, 1}|Aout(T)| × C(P (Aout(T))), FT (H ; ·) is measurable. For any c ∈
C(P (Ain,OE(T))), FT (·; c) is a probability measure.

For the places, transitions and arcs, there is a graphical notation as in Figure 3.1.

Place Guard transitionG

Delay transitionD

Immediate transitionI

Ordinary arc

Enabling arc

Inhibitor arc

Figure 3.1 Graphical notation for places, transitions and arcs in a DCPN

3.3.2 DCPN execution

The execution of a DCPN provides a series of increasing stopping times 0 = τ0 < τ1 < τ2 <

· · · , with for t ∈ (τi, τi+1) a fixed number of tokens per place and per token a colour which is the

solution of an ordinary differential equation. The execution uses a countable sequence {Ui; i =
0, 1, . . .} of independent random variables each having a uniform U [0, 1] distribution, and five rules

R0–R4 that solve enabling conflicts.

5In earlier DCPN definitions, the transition delay was defined as a probability distribution function that made use

of an integrable transition delay rate. Without losing generality, the transition delay is now defined to be the delay rate

itself.

40 Dynamically coloured Petri nets

Initiation The probability measure I characterises an initial marking at τ0 = 0, i.e., it gives each

place P ∈ P zero or more tokens and gives each token in P a colour in C(P), i.e., a Euclidean-

valued vector. Define, following Section 3.2, the quantile function of I by a measurable function

Iqf : [0, 1] → N|P| × C(P)N such that µL{u | Iqf (u) ∈ H} = I(H), for H Borel measurable

and µL the Lebesgue measure. Then the initial marking is a random hybrid vector characterised

by (M0, C0) = Iqf (U0). Here, M0 is a |P|-dimensional vector of non-negative integers, the ith

component Mi,0 of which denotes the number of tokens initially in place Pi, i = 1, . . . , |P|, and

C0 is a
∑|P|

i=1Mi,0n(Pi)-dimensional Euclidean-valued random vector which provides the colours

of the initial tokens (tokens in place Pi have a colour in C(Pi) = Rn(Pi)). If M1,0 ≥ 1 then the

first n(P1) components of C0 are assigned to the first token in P1. If M1,0 ≥ 2 then the next n(P1)

components of C0 are assigned to the second token in P1, etc., until all tokens in P1 have their

assigned colour. The following components of C0 are assigned to tokens in places P2, . . . , P|P|

according to the same recipe. If C(P) = R0 (i.e., n(P) = 0) then the tokens in P get no colour.

Token colour evolution For each token in each place P ∈ P for which C(P) 6= R0: if the colour

of this token is CP
τ at time t = τ and if this token is still in this place at t > τ , then the colourCP

t of

this token follows the unique solution of the ordinary differential equation dCP
t = VP (CP

t)dt with

initial condition CP
τ , i.e., CP

t = CP
τ +

∫ t
τ
VP (CP

s)ds. Each token in a place for which C(P) = R0

remains without colour.

Transition enabling A transition T is pre-enabled if it has at least one token per incoming

ordinary and enabling arc in each of its input places and has no token in places to which it is

connected by an inhibitor arc. For each transition T that is pre-enabled at τ , consider one token

per ordinary and enabling arc in its input places and write CT
t ∈ C(P (Ain,OE(T))), t ≥ τ , as

the column vector containing the colours of these tokens; CT
t evolves through time according to its

corresponding token colour functions of the places in P (Ain,OE(T)). If this vector is not unique (for

example, if one input place contains several tokens per arc), all possible such vectors are executed

in parallel. Hence, a transition can be pre-enabled by multiple combinations of input tokens in

parallel.

A transition T is enabled if two requirements hold true. The first requirement is that the

transition is pre-enabled. The second requirement is as follows:

• If T is an immediate transition, i.e., T ∈ TI , there is no second requirement: the transition is

enabled when it is pre-enabled.

• If T is a guard transition, i.e., T ∈ TG, the second requirement holds true when CT
t ∈ ∂GT .

3.3 Dynamically coloured Petri nets 41

• If T is a delay transition, i.e., T ∈ TD, the second requirement holds true at t = τ+σT , where

σT is according to a probability distribution function DT (t− τ) = 1− exp(−
∫ t
τ
DT (C

T
s)ds).

Here, the characterisation of σT , in terms of uniform random variables, is as follows: Suppose

T D
τ denotes the multiset of delay transitions that are pre-enabled at τ and that are still pre-enabled

at t > τ , where a transition is included in the multiset multiple times if it is pre-enabled by multiple

vectors of input tokens in parallel. Without loss of generality, denote T D
τ = {T1, . . . , T|T D

τ |}.

Then for Ti ∈ T D
τ , we find σTi = Dqf

Ti
(Uj), where Dqf

Ti
is defined by Dqf

Ti
(u) = inf{t − τ |

exp(−
∫ t
τ
DTi(C

Ti
s)ds) ≤ u}, with inf{ } = +∞. Here, Uj runs through |T D

τ | uniform random

variables, i.e., the number of pre-enabled delay transitions, such that each pre-enabled delay

transition uses one uniform random variable (per vector of input tokens) to determine its time of

enabling.6

In the case of competing enablings, the following rules apply:

R0 The firing of an immediate transition has priority over the firing of a guard or a delay transition.

R1 If one transition becomes enabled by two or more sets of input tokens at exactly the same time,

and the firing of any one set will not disable one or more other sets, then it will fire these sets

of tokens independently, at the same time.

R2 If one transition becomes enabled by two or more sets of input tokens at exactly the same

time, and the firing of any one set disables one or more other sets, then the set that is fired is

selected randomly, with the same probability for each set.

R3 If two or more transitions become enabled at exactly the same time and the firing of any one

transition will not disable the other transitions, then they will fire at the same time.

R4 If two or more transitions become enabled at exactly the same time and the firing of any one

transition disables some other transitions, then each combination of transitions that can fire

independently without leaving enabled transitions gets the same probability of firing.

By these rules and their combinations, if a transition is enabled in a particular set of tokens, then it

is either fired or it is disabled (in this set of tokens) by the firing of another transition. An example

of application of rule R1+R2+R4 is given in Figure 3.2, and the explanation below it.

6Note that an equivalent derivation is Dqf
Ti
(u) = inf{t − τ | exp(−

∫ t

τ
DTi

(CTi
s)ds) ≤ u} = inf{t − τ |∫ t

τ
DTi

(CTi
s)ds ≥ − lnu}. Also note that if U ∼ U [0, 1], i.e., uniform on [0, 1], then − lnU ∼ Exp{1}, i.e.,

exponential with intensity 1. This equivalent formulation is not pursued further since commonly, the way to generate

exponential random variables is by means of uniform random variables and taking the natural logarithm transformation

above, hence we are back at using uniform variables.

42 Dynamically coloured Petri nets

T

••P1 • P2 • P3

I TA I TB I TC I TD

Figure 3.2 Example application of a combination of Rules R1, R2 and R4

In Figure 3.2, transitions TA, TB , TC and TD are all enabled, but they can only simultaneously

fire in the sets TA + TA + TC , TA + TA + TD, TA + TB + TD or TA + TB + TD. Here, the last set

is listed twice: In one combination, the first token in P1 is fired by TA and the second by TB; in

the other combination, the first token in P1 is fired by TB and the second by TA. This order may be

relevant if the tokens in P1 have different colours. Each of these four sets gets the same probability

of occurrence, e.g., the probability that TA fires twice in parallel with itself (by application of Rule

R1), and together with TC , is equal to 1
4
. The firing of only, e.g., TD would leave enabled transitions

behind, hence is not considered as an optional ‘set’.

Transition firing If T is enabled, suppose this occurs at time τ and in a particular vector of

token colours CT
τ , it removes one token per arc in Ain,O(T) corresponding with CT

τ from each

of its input places (i.e., tokens are not removed along enabling arcs, meaning that tokens in

P (Ain,OE(T))\P (Ain,O(T)) are not removed). Next, T produces zero or one token along each

output arc: If (eTτ , a
T
τ) is a hybrid random vector with probability measure FT (·;CT

τ), then vector

eTτ ∈ {0, 1}|Aout(T)| is an |Aout(T)|-dimensional vector of zeros and ones, where the ith vector

element corresponds with the ith outgoing arc of transition T . An output place gets a token iff it is

connected to an arc that corresponds with a vector element 1. Moreover, aTτ specifies the colours

of the produced tokens, i.e., if the first 1 in eTτ corresponds with an arc from T to Pj , then the first

n(Pj) elements in vector aTτ are assigned to the token produced in output place Pj . The remaining

elements in aTτ are assigned to other tokens in the same way.

Suppose T F
τ denotes the multiset of transitions that will fire at τ , where a transition is included

in the multiset multiple times if it fires multiple vectors of input tokens in parallel (see Rule R1

above). Without loss of generality, denote T F
τ = {T1, . . . , T|T F

τ |}. Then for each Ti ∈ T F
τ ,

the random hybrid vector from FTi(·;CTi
τ) is characterised by defining the quantile function

of FTi(·;CTi
τ) as a measurable function F qf

Ti
: [0, 1] × C(P (Ain,OE(Ti))) → {0, 1}|Aout(Ti)| ×

C(P (Aout(Ti))) such that µL{u | F qf
Ti
(u, c) ∈ H} = FTi(H ; c) for H in the Borel set of

{0, 1}|Aout(Ti)| ×C(P (Aout(Ti))) and µL is the Lebesgue measure. Then (eTiτ , a
Ti
τ) = F qf

Ti
(Uj , C

Ti
τ).

Here, Uj runs through |T F
τ | uniform random variables, such that each firing transition uses one

uniform random variable (per vector of input tokens) to determine its output tokens.

3.3 Dynamically coloured Petri nets 43

Execution from τ0 onwards Using the above principles, the execution from τ0 onwards is as

follows: At time τ0, the initial marking produces an initial set of coloured tokens, according to the

description above (at Initiation). Next, at t = τ0, zero or more transitions are pre-enabled (if this

number is zero, the DCPN is dead, see Definition 2.17). If these include immediate transitions or

enabled guard transitions (e.g., if the initial marking starts on the guard boundary), then these are

fired without delay, but with use of rules R0–R4 (see at Transition enabling and at Transition firing

above). If after this, still immediate transitions are enabled, then these are also fired, and so forth,

until no more immediate or guard transitions are enabled. Each of the transitions that fire at τ0

uses their firing measure and one uniform random variable (per firing) to determine the number and

colours of their output tokens. If T F
τ0

is the multiset of immediate or guard transitions that fire at τ0

(this multiset is possibly empty), then |T F
τ0
| uniform random variables are used by their respective

firing functions, i.e., Uj , for j = 1, . . . , |T F
τ0
|.

Next, for t > τ0, the colours of the tokens in places for which C(P) 6= R0 start evolving

according to their token colour functions (see at Token colour evolution, above), until the next

transition is enabled, say at t = τ1 (see at Transition enabling, above). Any pre-enabled guard

transition T is enabled if its vector of input tokens satisfies CT
t ∈ ∂GT . For t > τ0, any pre-enabled

delay transition becomes enabled according to a time corresponding to its delay function. This time

uses a random variable U|T F
τ0

|+j , for j = 1, . . . , |T D
τ0
|, where |T D

τ0
| is the number of delay transitions

that are pre-enabled at τ0. If at t = τ1, one or more transitions are enabled, they are fired and their

firing measures are used to produce new tokens (see at Transition firing, above). If after this, at

t = τ1, immediate or guard transitions are enabled, then these are fired without delay, as above

for the situation at t = τ0, until no more transitions are enabled at t = τ1. Next, for t > τ1, the

execution continues in the same way as described above for t > τ0. Here, if a pre-enabled delay

transition was already pre-enabled at t < τ1 and still is pre-enabled at t ≥ τ1 in the same vector of

input tokens, then no new uniform variable is used to generate its time of enabling. If τ2 denotes

the time after τ1 at which a next enabling occurs, the firing measures of the enabled transitions are

used at τ2, with help of a number of uniform random variables, to determine the tokens fired and

their colours, and so forth.

In order to keep track of the identity of individual tokens, the tokens in a place are ordered

according to the time at which they entered the place, or, if several tokens are produced for one place

at the same time, according to the order within the set of arcs A = {A1, . . . , A|A|} along which

these tokens were produced (the firing measure produces zero or one token along each output arc).

If due to rule R1, a transition fires two or more tokens along one arc at the same time, their assigned

order is according to the colours they have (smallest colour first). If under these conditions, two

tokens have exactly the same colour, they are indistinguishable and the marking (defined next) will

not be dependent on their order.

44 Dynamically coloured Petri nets

3.3.3 DCPN stochastic process

The marking of the DCPN is given by the numbers of tokens in the places and the associated

colour values of these tokens. Due to the uniquely defined order of the tokens, the marking is unique

except possibly when one or more transitions fire (particularly, immediate transitions fire without

delay hence a sequence of immediate transitions firing will generate a sequence of markings at the

same time instant). If a probability space (Ω,ℑ,P) is given, the DCPN marking at each time instant

can be mapped to a unique DCPN stochastic process {Mt, Ct} as follows:

For any t ≥ τk−1, k = 1, 2, . . ., let a token distribution be characterised by the vector M ′
t =

(M ′
1,t, . . . ,M

′
|P|,t), whereM ′

i,t ∈ N denotes the number of tokens in place Pi at time t and 1, . . . , |P|
refers to a unique ordering of places adopted for DCPN. At times t ∈ (τk−1, τk) when no transition

fires, the token distribution is unique and the DCPN discrete process state Mt is defined to be equal

to M ′
t . The associated colours of these tokens are uniquely gathered in a column vector Ct which

first contains all colours of tokens in place P1, next (i.e., below it) all colours of tokens in place

P2, etc, until place P|P|, where 1, . . . , |P| refers to a unique ordering of places adopted for DCPN.

Within a place the colours of the tokens are ordered according to the unique ordering of tokens

within their place defined for DCPN (see under DCPN execution above).

If at time t = τk (k ≥ 0) one or more transitions fire, then the set of applicable token

distributions is collected in M̃τk = {M ′
τk
;M ′

τk
is a token distribution at time τk}, and the DCPN

discrete process state at time τk is defined by Mτk = {M ′
τk
;M ′

τk
∈ M̃τk and no transitions are

enabled in M ′
τk
}; in words, Mτk is the token distribution that occurs after all transitions that fire at

time τk have been fired. The associated colours of these tokens are uniquely gathered in a column

vectorCτk in the same way as described above. This construction ensures that the process {Mt, Ct}
has limits from the left and is continuous from the right, i.e., it satisfies the càdlàg property. If at a

time t when one or more transitions fire, the process {Mt} jumps to the same value again, and only

Ct makes a jump, then the càdlàg property for {Ct} (hence for {Mt, Ct}) is still maintained due to

the timing construction of {Mt} above and the direct coupling of {Ct} with {Mt}.

3.4 Piecewise deterministic Markov processes

This section presents, following [Dav93], a definition of piecewise deterministic Markov

process (PDP). Consider a probability space (ΩH ,ℑH ,P), where ΩH is the Hilbert cube, ℑH is the

product σ-algebra, and P is the product probability measure. Here, the Hilbert cube ΩH is defined

by ΩH =
∏∞

i=0 Vi, with Vi a copy of the unit interval V = [0, 1]. This provides the canonical space

for a countable sequence of independent random variables U0(ω), U1(ω), U2(ω), . . ., each having

uniform [0, 1] distribution, defined by Ui(ω) = ωi for elements ω = (ω0, ω1, ω2, . . .) ∈ ΩH .

3.4 Piecewise deterministic Markov processes 45

Definition 3.2 (Piecewise deterministic Markov process). A PDP {θt, Xt} is defined by an

execution on probability space (ΩH ,ℑH ,P) of a collection (K, d, E, f , θ0, X0, λ, Q), under

four standard conditions P1–P4.

The elements in the collection (K, d, E, f , θ0, X0, λ, Q) are referred to as the PDP elements.

An execution7 of the PDP elements defines a PDP {θt, Xt}; more precisely: it defines a sample

path {(θt(ω), Xt(ω)); t ∈ T} for arbitrary ω ∈ ΩH . Informally, this is explained as follows: The

PDP is a stochastic process that consists of two components: a discrete valued component {θt},

which takes values in a countable set K, and a continuous valued component {Xt}, which takes

values in a Euclidean state space defined by d and E. The initial state is (θ0, X0), and from this

state onwards, the PDP is defined by an ordinary differential equation with drift coefficient f , i.e.,

dθt = 0 and dXt = f(θt, Xt)dt. A jump in the PDP state occurs spontaneously with rate λ, or

forced, when {Xt} hits the boundary of its state space. The PDP transition measure Q defines the

value of the PDP state after the jump.

The formal explanation provided below is organised as follows:

• Section 3.4.1 defines the PDP elements (K, d, E, f , θ0, X0, λ, Q).

• Section 3.4.2 explains the execution of the PDP elements which defines the PDP {θt, Xt}.

• Section 3.4.3 presents the PDP conditions P1–P4 and, following [Dav93], the PDP main

properties.

3.4.1 PDP elements

The PDP elements (K, d, E, f , θ0, X0, λ, Q) are defined as follows:

• K is a countable set.

• d : K → N is a function that maps each θ ∈ K to a natural number.

• E = {{θ}×Eθ; θ ∈ K} is the hybrid state space, where for each θ ∈ K, Eθ is an open subset

of Rd(θ). The boundary of E is ∂E , {{θ} × ∂Eθ; θ ∈ K}, in which ∂Eθ is the boundary of

Eθ.

• For all θ ∈ K, f(θ, ·) : Rd(θ) → Rd(θ) is a vector field.

• θ0 ∈ K and X0 ∈ Eθ0 are initial values.

• λ : E → R+ is a jump rate function, i.e., the intensity of jumps.

7Note that [Dav93] uses the term sample path of a stochastic process, not the term execution.

46 Dynamically coloured Petri nets

• Q : B(E)×(E∪∂E) → [0, 1] is a PDP transition measure, where B(E) is the Borel σ-algebra

on E. For any (θ, x) ∈ E ∪ ∂E, Q(·; θ, x) is a probability measure.

3.4.2 PDP execution

This section describes the execution of the PDP elements (K, d, E, f , θ0, X0, λ, Q) which

defines a piecewise deterministic Markov process {θt, Xt}, i.e., a sample path {θt(ω), Xt(ω); t ∈
T} for any arbitrary ω ∈ ΩH . Recall that the Hilbert cube ΩH provides a sequenceU0(ω), U1(ω), . . .

of independent uniform random variables defined by Ui(ω) = ωi, for ω = (ω0, ω1, . . .). This

sequence is used to uniquely characterise a sample path of the PDP for any given ω ∈ ΩH .

Initiation The execution starts with an initiation, say at time τ0 = 0. At this time, the PDP initial

state is (θ0, X0), with θ0(ω) ∈ K and X0(ω) ∈ Eθ0 .

Process from initial time until first jump For t ≥ τ0, the process {θt} keeps a constant value θ0,

i.e., θt(ω) = θ0(ω). The process {Xt} is determined by the ordinary differential equation dXt =

f(θ0, Xt)dt with initial value X0(ω) ∈ Eθ0 , i.e., Xt(ω) = X0(ω) +
∫ t
τ0
f(θ0(ω), Xs(ω))ds =:

φθ0,X0,t−τ0(ω). Therefore, as long as no jumps occur, the PDP state at t ≥ τ0 is given by

(θt(ω), Xt(ω)) = (θ0(ω), φθ0,X0,t−τ0(ω)). Here, φθτ ,Xτ ,t−τ (ω)) is referred to as the flow.

Generation of time of first jump At some random moment τ1 > τ0 the PDP state value may

jump. This moment is the minimum of:

1. The time at which a forced jump occurs, i.e., when {Xt} hits the boundary ∂Eθ0 of Eθ0 .

2. The time at which a spontaneous jump occurs with jump rate (intensity) λ(θt, Xt).

The survivor function for the time until the first jump after τ0 is then given by Γθ0,X0,t−τ0 , where

Γθ,x,t−τ ,

{
0 if t− τ ≥ t∗(θ, x)

exp
(
−
∫ t
τ
λ(θ, φθ,x,s−τ)ds

)
otherwise

(3.4.1)

where t∗(θ, x) , inf{t − τ > 0 | φθ,x,t−τ ∈ ∂Eθ}, with inf ∅ = +∞. This means, t∗(θ0, X0)

denotes the time until {Xt} first hits the boundary ∂Eθ0 .

The time τ1 of the first jump is given by τ1(ω) = τ0 + σ1(ω), where σ1 is a random variable

characterised by Γθ0,X0,t−τ0 : Define Γqf(u, θ, x, τ) = inf{t − τ | Γθ,x,t−τ ≤ u}, with inf ∅ = +∞,

then σ1(ω) = Γqf (U1(ω), θ0(ω), X0(ω), τ0).

3.4 Piecewise deterministic Markov processes 47

Process value right after the first jump The value (θτ1(ω), Xτ1(ω)) of the PDP state right after

the jump is a random hybrid vector ζ1 characterised by PDP transition measure Q(·; θτ1−, Xτ1−) =

Q(·; θ0, φθ0,X0,τ1−τ0). Define the measurable function Qqf : [0, 1] × (E ∪ ∂E) → E such that

µL{u | Qqf(u, θ, x) ∈ B} = Q(B; θ, x) for B Borel measurable and µL the Lebesgue measure.

Then (θτ1(ω), Xτ1(ω)) := ζ1(ω) = Qqf(U2(ω), θ0(ω), φθ0,X0,τ1−τ0(ω)).

Process from time right after first jump onwards From time τ1 onwards, the execution of the

PDP is according to the same recipe: Let for k = 2, (θτk−1
(ω), Xτk−1

(ω)) be the PDP state right

after the k − 1st jump, then for k = 2, 3, . . .:

A random variable σk is characterised by survivor function Γθτk−1
,Xτk−1

,t−τk−1
, i.e., σk(ω) =

Γqf(U2k−1(ω), θτk−1
(ω), Xτk−1

(ω), τk−1(ω)). Then the time τk(ω) of the kth jump is τk(ω) =

τk−1(ω)+σk(ω). The sample path up to the kth jump is given by (θt(ω), Xt(ω)), with for τk−1(ω) ≤
t < τk(ω) ≤ ∞, θt(ω) = θτk−1

(ω) and Xt(ω) = Xτk−1
(ω) +

∫ t
τk−1

f(θτk−1
(ω), Xs(ω))ds =

φθτk−1
,Xτk−1

,t−τk−1
(ω).

Next, a random hybrid vector ζk(ω) is characterised by PDP transition measure Q, i.e., ζk(ω) =

Qqf(U2k(ω), θτk−1
(ω), φθτk−1

,Xτk−1
,τk−τk−1

(ω)). Then, if τk(ω) < ∞, the process state at the time

τk(ω) of the kth jump is given by (θτk(ω), Xτk(ω)) := ζk(ω).

3.4.3 PDP conditions

In [Dav93, Section 24.8], Davis presents the standard conditions under which the PDP above is

uniquely defined. These conditions are formulated as P1–P4 below.

P1 For all θ ∈ K, f(θ, ·) is locally Lipschitz continuous, i.e., for any compact D ⊂ Rd(θ), there

exists a constant LD(θ) such that |f(θ, x)− f(θ, y)| ≤ LD(θ)|x− y|, for all x, y ∈ D. This

ensures that for each initial state (θτ , Xτ) at initial time τ there exists a unique solutionXt =

φθτ ,Xτ ,t−τ to the ordinary differential equation dXt = f(θτ , Xt)dt. In addition, it is assumed

that the flow φθτ ,Xτ ,t−τ never explodes, i.e., t∞(θτ , Xτ) = ∞ whenever t∗(θτ , Xτ) = ∞.

Here,

– t∞(θ, x) denotes the explosion time of the flow φθ,x,t−τ , i.e., |φθ,x,t−τ | → ∞ as t ↑
t∞(θ, x),

– t∗(θ, x) denotes the time until φθ,x,t−τ hits the boundary of Eθ, i.e., t∗(θ, x) , inf{t −
τ > 0 | φθ,x,t−τ ∈ ∂Eθ}.

P2 λ : E → R+ is a measurable function such that for all (θ, x) ∈ E, there is ǫ(θ, x) > 0 such

that t→ λ(θ, φθ,x,t−τ) is integrable on [0, ǫ(θ, x)).

48 Dynamically coloured Petri nets

P3 For each fixed B ∈ B(E), Q(B; ·, ·) is measurable and Q(θ, x; θ, x) = 08 for all (θ, x) ∈ E.

P4 If Nt =
∑

k 1{t≥τk}, where 1 is an indicator function and τ0, τ1, . . . are the times at which a

jump occurs, then it is assumed that for every starting point (θ, x) ∈ E and for all t ∈ R+,

ENt < ∞, where E denotes expectation. This means, there will be a finite number of jumps

in finite time.

Davis [Dav93] shows that under these standard conditions P1–P4:

• A PDP is a time-homogeneous strong Markov process, [Dav93, Theorem 25.5].

• t∗(·) is a Borel-measurable function, [Dav93, Lemma 27.1].

• A PDP is a Borel right process, [Dav93, Theorem 27.8].

In [Dav93, Theorem 26.14], Davis characterises the extended generator of the PDP, i.e., the operator

A defined by ∂
∂t
E{ϕ} = E{Aϕ}, as well as its domain.

Remark 3.1. An important question is how to verify whether conditions P1–P4 are satisfied. For

conditions P1–P3, this is relatively straightforward, except for the no-explosions condition in P1.

Following [Øk02, Theorem 5.2.1], a sufficient condition for no explosions is that for all θ there

exists K(θ) such that for all x ∈ Eθ, |f(θ, x)| ≤ K(θ)(1 + |x|).
For condition P4, [Dav93, Page 60] gives sufficient conditions: (1) λ is bounded, and either (2a)

or (2b) below are satisfied: (2a) ∀(θ, x) ∈ E, t∗(θ, x) = ∞, i.e., there are no ‘active’ boundaries;

(2b) For some χ > 0, Q(Aχ; θ, x) = 1 for all (θ, x) ∈ ∂E, where Aχ = {(θ, x) ∈ E | t∗(θ, x) ≥
χ}, where, as above, t∗(θ, x) , inf{t − τ > 0 | φθ,x,t−τ ∈ ∂Eθ}. Notice that (2b) means that the

process always jumps to a state from which it takes some time χ > 0 to reach the boundary again.

3.5 Piecewise deterministic Markov processes into dynamically

coloured Petri nets

This section shows that under a few conditions, each piecewise deterministic Markov process

(PDP) can be represented by a dynamically coloured Petri net (DCPN), by providing a one-to-one

mapping9 from PDP into the set of DCPN processes.

Theorem 3.1 (PDP into DCPN). Consider an arbitrary PDP which is defined by an execution of

its elements (K, d, E, f , θ0, X0, λ, Q) on the Hilbert cube (ΩH ,ℑH ,P). Suppose K is finite, and

8Due to this condition it is possible to recognise jumps of the process.
9A one-to-one mapping is defined as a mapping ϕ : A → B such that if ϕ(a1) = ϕ(a2) then a1 = a2, or,

alternatively, if a1 6= a2 then ϕ(a1) 6= ϕ(a2).

3.5 Piecewise deterministic Markov processes into dynamically coloured Petri nets 49

that for each θ and initial value x0 = x, the ordinary differential equation dxt = f(θ, xt)dt has a

unique solution. Then the elements of this PDP can be mapped one-to-one to a DCPN (P , T , A,

N , S, C, I, V , G, D, F) satisfying R0–R4. If the resulting DCPN is executed on the Hilbert cube

(ΩH ,ℑH ,P) then the resulting DCPN process and the original PDP are pathwise equivalent.

Proof. For the proof we consider an arbitrary PDP {θt, Xt} which is defined by the execution of

the PDP elements (K, d, E, f , θ0, X0, λ, Q). Next, we prove Theorem 3.1 by the following steps:

• (Construction of DCPN elements.) First, we assume that K is finite and that for each θ and

initial value x0, dxt = f(θ, xt)dt has a unique solution. We specify a one-to-one mapping

that characterises DCPN elements (P , T , A, N , S, C, I, V , G, D, F) in terms of PDP

elements (K, d, E, f , θ0, X0, λ, Q). The thus constructed DCPN is referred to as DCPNPDP.

• (DCPNPDP execution and verification of R0–R4.) The execution of the constructed DCPNPDP

elements provides the DCPNPDP stochastic process, for which we verify that DCPN rules

R0–R4 hold true.

• (Pathwise equivalence.) Finally, we show that if the original PDP elements and the

constructed DCPNPDP are both executed on the Hilbert cube (ΩH ,ℑH ,P), then their resulting

stochastic processes are pathwise equivalent.

3.5.1 Construction of DCPNPDP elements

We provide a mapping that characterises DCPN elements (P , T , A, N , S, C, I, V , G, D, F) in

terms of PDP elements (K, d, E, f , θ0, X0, λ, Q).

P = {Pθ; θ ∈ K}. Hence, for each θ ∈ K, there is one place Pθ. Since K is assumed finite, the

set of places is finite as well, which satisfies DCPN conditions.

T = TG ∪ TD ∪ TI , with TI = ∅, TG = {TGθ ; θ ∈ K}, TD = {TDθ ; θ ∈ K}. Hence, for each θ ∈ K

there is one guard transition TGθ and one delay transition TDθ .

A = AO ∪ AE ∪ AI , with |AI | = 0, |AE| = 0, and |AO| = 2|K| + 2|K|2. Hence, there are no

inhibitor arcs or enabling arcs in this DCPNPDP constructed, and the number of ordinary arcs

is 2|K|+ 2|K|2.

N : The node function maps each arc in A (= AO) to one pair of nodes. These connected

pairs of nodes are: {(Pθ, TGθ); θ ∈ K} ∪ {(Pθ, TDθ); θ ∈ K} ∪ {(TGθ , Pϑ); θ, ϑ ∈ K} ∪
{(TDθ , Pϑ); θ, ϑ ∈ K}. Hence, each place Pθ (θ ∈ K) has two outgoing arcs: one to guard

transition TGθ and one to delay transition TDθ . Each transition has |K| outgoing arcs: one arc

to each place in P .

50 Dynamically coloured Petri nets

S = {Rd(θ); θ ∈ K}.

C: For all θ ∈ K, C(Pθ) = Rd(θ).

I: I(Mθ0 , X0) = 1, where Mθ is the |P|-dimensional vector that has a one at the element

corresponding to place Pθ and zeros elsewhere. Hence, place Pθ0 initially gets one token

with colour X0 while all other places initially get zero tokens.

V: For all θ ∈ K, VPθ
(·) = f(θ, ·). Since it was assumed that for each θ and initial value x0,

dxt = f(θ, xt)dt has a unique solution, the constructed VPθ
satisfies DCPN conditions.

G: For all θ ∈ K, GTG
θ
= Eθ.

D: For all θ ∈ K, DTD
θ
(·) = λ(θ, ·).

F : For a given transition, let e′ be the vector of length |K| containing a one at the component

corresponding with the arc to place Pϑ′ and zeros elsewhere. Then for all θ ∈ K,

FTG
θ
(e′, x′; x) = FTD

θ
(e′, x′; x) = Q(ϑ′, x′; θ, x), for all x ∈ Eθ ∪ ∂Eθ, ϑ′ ∈ K and x′ ∈ Eϑ′ .

Here, for T ∈ {TGθ , TDθ }, FT (e
′, x′; x) denotes the probability that transition T produces one

token for place Pϑ′ with colour x′, if it removes a token from Pθ which has colour x.

Figure 3.3 shows part of the graphical representation of the constructed DCPNPDP, in which for

simplicity all transitions except two have been omitted.

...Pθi

GTGθi D TDθi

Pθ1
...

· · · Pθi−1

...

Pθi+1

...

· · · Pθ|K|

...

Figure 3.3 Part of graphical representation of a dynamically coloured Petri net representing a

piecewise deterministic Markov process

Remark 3.2. Notice that the mapping constructed above is one-to-one, i.e., if we have two different

PDPs, e.g., PDP1 and PDP2, then the resulting DCPNPDP1 and DCPNPDP2 are also different.

Here, we define PDP1 and PDP2 to be different, if at least one of their elements are different, or

if they are defined on a different probability space. A similar definition holds for DCPNPDP1 and

DCPNPDP2 being different.

3.5 Piecewise deterministic Markov processes into dynamically coloured Petri nets 51

3.5.2 DCPNPDP execution

Following Section 3.3.3, the DCPNPDP execution uses a sequence {Ui; i = 0, 1, . . .} of

independent uniform U [0, 1] random variables.

Initiation The probability measure I constructed in Section 3.5.1 generates the initial marking

at time τ0 = 0, which is characterised by (M0, C0) = Iqf (U0), where Iqf : [0, 1] → NP × C(P)N

is the quantile function of I. By construction of I, with probability one, (M0, C0) = (Mθ0 , X0),

whereM0 =Mθ0 is a unit vector of length |P| = |K| which has a one at the element corresponding

with place Pθ0 . Since with this, there is only one token, the entire colour vector C0 is assigned to

this single token in place Pθ0 , with C0 = X0 ∈ C(Pθ0) = Rd(θ0).

Token colour evolution From the initiation C
Pθ0
0 = C0 onwards, the colour C

Pθ0
t of the

token in place Pθ0 evolves according to the corresponding token colour function, i.e., dC
Pθ0
t =

VPθ0
(C

Pθ0
t)dt, which has unique solution C

Pθ0
t = C

Pθ0
0 +

∫ t
τ0
VPθ0

(C
Pθ0
s)ds.

Transition enabling By construction, two transitions are pre-enabled, i.e., one guard transition

TGθ0 and one delay transition TDθ0 . These transitions compete for the token, which resides in their

common input place Pθ0 . TGθ0 is enabled when C
Pθ0
t ∈ ∂GTG

θ0
; TDθ0 is enabled when t = τ0 + σ

TD
θ0

1 ,

where σ
TD
θ0

1 = Dqf

TD
θ0

(U1), in which Dqf

TD
θ0

denotes the quantile function of DTD
θ0
(t − τ0) = 1 −

exp(−
∫ t
τ0
DTD

θ0
(C

Pθ0
s)ds).

Transition firing The first transition that is enabled removes the token from Pθ0 . This happens at

time τ1, which is the minimum of inf{t | CPθ0
t ∈ ∂GTG

θ0
} and τ0 + σ

TD
θ0

1 . The firing measure (FTG
θ

or FTD
θ

) of the enabled transition is used to determine the colour and place of a new token at time

τ1. It uses the colour of the input token, which is C
Pθ0
τ1 , to generate a unit vector Mτ1 that denotes

which output place gets a token, and a vector Cτ1 that denotes the colour of this token. If transition

T fires (T = TGθ0 or T = TDθ0), then (Mτ1 , Cτ1) = F qf
T (U2, C

Pθ0
τ1). By construction, only one token

is produced, and the possible places for this single token are {Pθ; θ ∈ K}.

Execution after first transition firing After this, the execution is in the same way from the new

state (Mτ1 , Cτ1) on. Because at all times each transition firing removes one token and produces one

token, the number of tokens does not change for t > 0. Hence, for t ≥ 0 there is one token and the

possible places for this single token are {Pθ; θ ∈ K}.

Between times when a transition fires, i.e., during intervals (τk−1, τk), the DCPNPDP marking

(Mt, Ct) is piecewise continuous, with Mt a constant unit vector and Ct continuous and equal to

52 Dynamically coloured Petri nets

the colour of the single token in the DCPNPDP. At times τk (k = 1, 2, . . .), the marking jumps.

The time of jump is determined by one pre-enabled guard transition and one pre-enabled delay

transition, which compete for their common input token. The delay transition uses one uniform

random variable U2k−1 to determine when it is enabled. The marking (Mτk , Cτk) at τk equals the

token distribution and token colour right after the jump. This marking is determined by the firing

measure corresponding with the transition that is enabled. This firing measure uses one uniform

random variable U2k to characterise (Mτk , Cτk).

Verification of R0–R4 Next, we verify if DCPN rules R0–R4 hold true in the construction above.

Since there are no immediate transitions in the constructed DCPNPDP instantiation, rule R0 holds

true. Since there is only one token in the constructed DCPNPDP instantiation, R1–R3 also hold true.

Rule R4 is in effect when for particular θ, transitions TGθ and TDθ become enabled at exactly the

same time. Since DTD
θ

is integrable, the probability that this occurs is zero, yielding that R4 holds

with probability one. However, if this event should occur, then due to FTG
θ
= FTD

θ
, the application

of rule R4 has no effect on the path of the DCPN process.

3.5.3 Pathwise equivalence

Finally, we show that if the DCPNPDP is executed on the Hilbert cube (ΩH ,ℑH ,P), then the

DCPNPDP stochastic process is pathwise equivalent to the original PDP. This is done by showing:

• Equivalence of initial states

• Equivalence of continuous evolution

• Equivalence of time of jumps

• Equivalence of size of jumps

Effectively, the execution on the Hilbert cube means that for a given ω = (ω0, ω1, . . .) ∈ ΩH ,

we can use that the sequence of uniform random variables {Ui; i = 0, 1, . . .} used to execute the

DCPNPDP, is provided by Ui = Ui(ω) = ωi (i = 0, 1, 2 . . .).

Equivalence of initial states The initial marking of the DCPNPDP is mapped to the PDP initial

state, i.e., I(Mθ, X0) = 1, where Mθ is the |P|-dimensional vector that has a one at the element

corresponding to place Pθ and zeros elsewhere. If Iqf denotes the quantile function of I, then the

random variable (M0(ω), C0(ω)) = Iqf (U0(ω)) = (Mθ0(ω), X0(ω)) is equivalent to the random

variable (θ0(ω), X0(ω)), i.e., the initial states are indistinguishable.

3.5 Piecewise deterministic Markov processes into dynamically coloured Petri nets 53

Equivalence of continuous evolution The continuous part of the DCPNPDP stochastic process

equals the vector that collects all token colours. Since there is only one token in the constructed

DCPNPDP at all times, this vector equals the colour of this single token. Until the first jump, this

colour follows the ordinary differential equation dC
Pθ0
t (ω) = VPθ0

(C
Pθ0
t (ω))dt which has unique

solution C
Pθ0
t (ω) = C

Pθ0
0 (ω) +

∫ t
τ0
VPθ0

(C
Pθ0
s (ω))ds. In the original PDP, the continuous process

follows ordinary differential equation dXt(ω) = f(θ0(ω), Xt(ω))dt. Due to equivalence of initial

states Mθ0 ≡ θ0 and C
Pθ0
0 = C0 = X0 and equivalence of drift coefficients VPθ0

(·) = f(θ0, ·),
this PDP continuous state has the same solution Xt(ω) = X0(ω) +

∫ t
τ0
f(θ0(ω), Xs(ω))ds =

φθ0,X0,t−τ0(ω), i.e., for t ≥ τ0 and for arbitrary ω ∈ ΩH , Xt(ω) = C
Pθ0
t (ω).

Equivalence of time of jumps The survivor function of the initial token in the DCPNPDP is the

complementary probability distribution function for the time until it is removed from its place by

an enabled transition. For each arbitrary place in which the initial token may reside, two transitions

are pre-enabled: a guard transition and a delay transition. If tG∗ (·) denotes the time until the guard

transition is enabled, i.e. tG∗ (M
θ0 , C0) , inf{t−τ0 > 0 | CPθ0

t ∈ ∂GTG
θ0
}, then the survivor function

of the initial token is:

ΥPθ0
,C0,t−τ0 ,

{
0 if t− τ0 ≥ tG∗ (M

θ0 , C0)

exp
(
−
∫ t
τ0
DTD

θ0
(C

Pθ0
s)ds

)
otherwise

(3.5.2)

For PDP, the survivor function is given by Equation (3.4.1).

Due to Xt(ω) = C
Pθ0
t (ω) for t ≥ τ0, and due to the mapping Eθ0 = GTG

θ0
, the PDP equivalent

boundary hit event is φθ0,X0,t−τ0 ∈ ∂Eθ0 , whereX0 = C0 and θ0 ≡ Mθ0 . Due to C
Pθ0
t = φθ0,X0,t−τ0 ,

we find that t∗(θ0, X0) = tG∗ (M
θ0 , C0). Due to mapping DTD

θ0
(·) = λ(θ0, ·), the PDP equivalent

event is when a spontaneous jump is according to jump rate λ(θ0, ·). Hence, the survivor functions

of the PDP and the DCPNPDP are the same. In particular, Υqf (u, Pθ0, C0, τ0) = Γqf(u, θ0, X0, τ0),

hence since the same uniform random variable U1(ω) = ω1 is used to evaluate both survivor

functions, then the time of firing of the first DCPNPDP transition is equal to the time of the

first jump of the original PDP: τ1(ω) = τ0 + σ1(ω), with σ1(ω) = Υqf(U1(ω), Pθ0, C0, τ0) =

Γqf(U1(ω), θ0, X0, τ0).

Equivalence of size of jumps This leaves showing equivalence between the size of jumps.

For the DCPNPDP, this is determined by the firing measure of the enabled transition, which

uses a uniform random variable U2(ω). Due to the mapping FTG
θ
(e′, x′; x) = FTD

θ
(e′, x′; x) =

Q(ϑ′, x′; θ, x), the PDP equivalent event is that if a random vector ζ1(ω) is characterised from

Q(·; θ0, φθ0,X0,τ1−τ0) using the same uniform random variable U2(ω), then ζ1(ω) = (θj(ω), Xτ1(ω))

if F generates a token for place Pθj with colour Cτ1(ω) = Xτ1(ω). This means, the DCPNPDP

54 Dynamically coloured Petri nets

state after the jump (Mθj (ω), Cτ1(ω)) and the PDP state after the jump (θj(ω), Xτ1(ω)) are

indistinguishable.

From τ1 onwards, the pathwise equivalence of the PDP and DCPNPDP processes is shown in

the same way. Since the PDP and the DCPNPDP are both defined on the Hilbert cube, from

stopping time τk−1 to stopping time τk both processes use the same independent realisations of

the random variables U2k−1(ω), U2k(ω), . . ., each having uniform [0, 1] distribution to generate all

random variables in both the PDP process and the DCPNPDP process. Hence, from stopping time

to stopping time, the PDP and the associated DCPNPDP process have pathwise equivalent (i.e.,

indistinguishable) paths and pathwise equivalent stopping times. Due to the unique definition of

the DCPNPDP stochastic process at times when transitions fire, the DCPNPDP state at stopping times

is also equivalent to the PDP state at the stopping times and both processes are càdlàg.

This completes the proof of Theorem 3.1.

3.6 Dynamically coloured Petri nets into piecewise determinis-

tic Markov processes

This section shows that under a few conditions, each dynamically coloured Petri net (DCPN)

can be represented by a piecewise deterministic Markov process (PDP), by providing an into-

mapping10 from DCPN into the set of PDPs.

Theorem 3.2 (DCPN into PDP). Consider an arbitrary DCPN (P , T , A, N , S, C, I, V , G, D, F)

satisfying R0–R4. If the initial marking is deterministic11, if the initial marking does not enable a

transition, if none of the transition firings enable a guard transition, and if the number of tokens

remains finite for t → ∞, then the elements of this DCPN can be mapped into the elements (K,

d, E, f , θ0, X0, λ, Q) of a PDP. If the original DCPN is executed on a probability space, then the

PDP defined by the execution of the resulting PDP elements is probabilistically equivalent to the

stochastic process defined by the execution of the original DCPN. If in addition, conditions D1–D3

below are satisfied, then PDP conditions P1–P4 hold true for the resulting PDP.

D1 For all P ∈ P for which C(P) 6= R0, VP is locally Lipschitz continuous. Moreover, there are

P-almost surely no explosions, i.e., if t′ denotes the time at which any component of a token

colour equals +∞ or −∞, and t′′ denotes the time until the first guard transition is enabled,

then t′ → ∞ whenever t′′ → ∞.

10An into-mapping is defined as a mapping ϕ : A → B such that Rϕ ⊂ B, where Rϕ is the range of ϕ, i.e.,

Rϕ = {b ∈ B | ∃a : ϕ(a) = b}.
11See also remark 3.4 on page 58.

3.6 Dynamically coloured Petri nets into piecewise deterministic Markov processes 55

D2 After a transition firing (or after a sequence of firings that occur at the same time instant) at

least one place must contain a different number of tokens, or the colour of at least one token

must have jumped (P-almost surely).

D3 In a finite time interval, each transition is expected to fire a finite number of times.

Proof. Consider an arbitrary DCPN (P , T , A, N , S, C, I, V , G, D, F) that satisfies rules R0–R4.

Next, we prove Theorem 3.2 by the following steps:

• (Construction of PDP elements.) First, we assume that the initial marking is deterministic,

that the initial marking does not enable a transition, that none of the transition firings enable

a guard transition, and that the number of tokens remains finite for t → ∞. We characterise

PDP elements (K, d, E, f , θ0, X0, λ, Q) in terms of DCPN elements. The thus constructed

PDP elements are referred to as PDPDCPN elements.

• (Probabilistic equivalence.) The execution of the PDPDCPN elements defines a sample path

of the PDPDCPN. We show that the PDPDCPN is probabilistically equivalent to the stochastic

process defined by the execution of the original DCPN.

• (Verification of P1–P4.) Finally, we show that if additionally, conditions D1–D3 are satisfied,

then PDP conditions P1–P4 hold true in the constructed PDPDCPN.

With this mapping, the constructed PDPDCPN discrete state θt will be a vector of length |P| that

counts the numbers of tokens in each place at time t. The PDPDCPN continuous state Xt will be

formed by a vector that contains the colours of all tokens in the DCPN at time t. This Xt evolves

through time according to the respective token colour functions; the PDPDCPN jumps correspond

with DCPN transitions firing, which may change the distribution of tokens among places (θt) and

the colours of the tokens (Xt).

Note that Section 3.7 discusses all conditions for Theorem 3.2.

3.6.1 Construction of PDPDCPN elements

We assume that the initial marking is deterministic, that the initial marking does not enable a

transition, that none of the transition firings enable a guard transition,and that the number of tokens

remains finite for t → ∞. We provide an into-mapping that characterises PDP elements (K, d, E,

f , θ0, X0, λ, Q) in terms of DCPN elements (P , T , A, N , S, C, I, V , G, D, F).

K: The discrete state space K is constructed from the reachability graph (RG) of the DCPN

graph, which is constructed from DCPN elements P , T , A, N , I. The nodes in the

RG represent all possible distributions of tokens among places; they are written as vectors

56 Dynamically coloured Petri nets

m = (m1, . . . , m|P|), where mi denotes the number of tokens in place Pi, i = 1, . . . , |P|,
where these places are uniquely ordered. Under condition that the number of tokens remains

finite, this graph is finite. It is constructed as follows:

The first nodes are found from the initial marking I: Each token distribution m for which

I(m, ·) > 0, is represented by a node in the RG. Since I provides finite numbers of tokens,

the number of initial nodes in the RG is finite. Under the condition that the initial marking is

deterministic, the number of initial nodes in the RG is equal to one. From then on, the RG

is constructed as follows: For each existing RG node, it is determined which transitions are

pre-enabled in this token distribution, and which combinations of transitions may fire, using

rules R0–R4. If it is possible to move in one jump from token distribution m to, say, either

one of distributions m1, . . . , mk, then arrows are drawn from m to (new or already existing)

nodes m1, . . . , mk. Each of m1, . . . , mk is treated in the same way. Each arrow is labelled

by the transition(s) fired at the jump. If mj can be reached from mi by the simultaneous

firing of several transitions, e.g., T1 and T2, then the label lists the transitions coupled by

+ signs, e.g., T1 + T2. If a node mj can be directly reached from mi by different (sets of)

transitions firing, then multiple arrows are drawn from mi to mj , each labelled by another

(set) of transition(s). Multiple arrows are also drawn if mj can be directly reached from mi

by firing of one transition, but by different sets of tokens, for example in case this transition

has multiple input tokens per incoming arc in its input places. In this case, the multiple arrows

each get this transition as label.

The nodes in the resulting reachability graph excluding the nodes from which an immediate

transition is enabled, form the discrete state space K. The nodes from which an immediate

transition is enabled are called vanishing nodes. Since the number of places in the DCPN is

finite and the number of tokens per place and the number of nodes in the RG are finite, K is

a countable (even finite) set, which satisfies the PDP conditions.

Since each non-vanishing node m ∈ RG corresponds uniquely with one θ ∈ K, sometimes,

by abuse of notation, we refer to θ as a token distribution.

Note that the RG can also be used to determine which transitions are pre-enabled in a

particular token distribution m: These are the transitions on the labels of all arrows leaving

m in the RG. Here, the set of pre-enabled transitions is referred to as a multiset since the set

of labels may contain one transition multiple times.

d: For each θ ∈ K, corresponding with node m = (m1, . . . , m|P|) in the RG, d(θ) =∑|P|
i=1min(Pi), where n(Pi) is defined through C(Pi) = Rn(Pi).

E: For each θ ∈ K, Eθ is an open subset of Rd(θ). Due to the characterisation of d in terms

of DCPN elements above, this Rd(θ) is uniquely characterised. The open subset Eθ is

3.6 Dynamically coloured Petri nets into piecewise deterministic Markov processes 57

constructed from transition guards as follows: If under token distribution θ, no guard

transitions are pre-enabled, then Eθ = Rd(θ). If under token distribution θ, one or more guard

transitions are pre-enabled, then Eθ = Rd(θ) \ ∂Eθ, where ∂Eθ is constructed as follows:

Without loss of generality, suppose that under token distribution θ, the multi-set of pre-

enabled guard transitions is T1, . . . , Tk. This set may contain one transition multiple times, if

such transition evaluates multiple input token vectors in parallel. Suppose {Pi1, . . . , Piri} =

P (Ain,OE(Ti)) are the input places of Ti that are connected to Ti by means of ordinary or

enabling arcs. This set may contain one place multiple times if such place is connected to Ti

by multiple arcs (input arcs of Ti). Define di =
∑ri

j=1 n(Pij), then ∂Eθ = ∂G ′
T1

∪ . . .∪ ∂G ′
Tk

,

where G ′
Ti

= [[GTi × Rd(θ)−di]] ∈ Rd(θ). Here [[·]] denotes a special ordering of all vector

elements: Vector elements are ordered according to the unique ordering of places and to the

unique ordering of tokens within their place defined for DCPN (see Section 3.3). Finally,

E = {{θ} ×Eθ; θ ∈ K}.

f : For each θ ∈ M and x ∈ Eθ, f(θ, x) = Col
|P|
i=1

{
Colmi

j=1{VPi
(cij)}

}
, where x =

Col
|P|
i=1

{
Colmi

j=1{cij}
}

and θ corresponds to (m1, . . . , m|P|). Here Col0j=1{·} , ∅ and if

C(Pi) = R0 for particular Pi, then VPi
= ∅.

θ0, X0: θ0 = M0 and X0 = C0, where due to the condition that the DCPN initial marking is

deterministic, (M0, C0) is according to I(M0, C0) = 1. Due to the assumption that in the

initial marking, no immediate or guard transition is enabled, we find that the constructed θ0

and X0 are uniquely defined and that θ0 ∈ K and X0 ∈ Eθ0 .

λ: For each θ ∈ K and x ∈ Eθ, λ(θ, x) =
∑k

n=1DTn(c
Tn), where, without loss of generality,

T1, . . . , Tk refers to the multi-set of transitions in TD that, under token distribution θ, are pre-

enabled and cTn are the respective elements of x that are used to pre-enable these transitions.

This set T1, . . . , Tk may contain one transition multiple times, if multiple input token vectors

are evaluated in parallel. If the set of pre-enabled delay transitions is empty in θ, then

λ(θ, ·) = 0.

Q: For each θ ∈ K, x ∈ Eθ, θ
′ ∈ K and x′ ∈ Eθ′ ,Q(θ

′, x′; θ, x) is characterised by the reachability

graph, the sets D, G and F and the rules R0–R4. The reachability graph is used to determine

which transitions are pre-enabled in token distribution θ; the sets D and G and the rules R0–

R4 are used to determine which pre-enabled transitions will actually fire from state (θ, x);

and finally, set F is used to determine the probability of (θ′, x′) being the state after the jump,

given the state (θ, x) before the jump and the set of transitions that will fire in the jump.

Because of its length, the characterisation of Q is moved to an appendix, Section 3.9.

This shows that all PDP elements can be characterised uniquely in terms of DCPN elements.

58 Dynamically coloured Petri nets

Remark 3.3. Notice that the mapping constructed above is an into-mapping; more specifically, it

is not one-to-one. To see this, notice that the existence of immediate transitions is not visible in

PDP: We can take a DCPN1, and construct a DCPN2 which is a copy of DCPN1 with the addition

of a sequence of immediate transitions which is a self-loop, i.e., the sequence brings the state right

after a spontaneous or forced jump back to where it was right after this spontaneous or forced

jump. Such sequence will not be visible in the mapped PDPDCPN2 hence we will conclude that

PDPDCPN1 = PDPDCPN2 while DCPN1 6= DCPN2.

Remark 3.4. In Theorem 3.2 we assumed that the DCPN initial marking is deterministic. This

was done to be in line with PDP, which considers one initial state (θ0, X0) only. Alternatively,

we could have assumed that the PDP initial state is according to a given probability measure

µθ0,X0 , and could have provided a mapping of µθ0,X0 in terms of the DCPN initial marking I, i.e.,

µθ0,X0(θ0, X0) = I(θ0, X0). Since this is not according to the PDP definition in [Dav93], this

assumption is not adopted here.

3.6.2 Probabilistic equivalence

We show that the execution of the constructed PDPDCPN delivers a stochastic process which is

probabilistically equivalent to the process defined by the original DCPN executed on a probability

space. This is done by showing

• Equivalence of initial states

• Equivalence of continuous evolution

• Equivalence of times of jumps

• Equivalence of size of jumps

Equivalence of initial states The initial state is (θ0, X0) which is formed by the initial marking

of the DCPN. If Iqf denotes the quantile function of I then (θ0, X0) = (M0, C0) = Iqf (U0),

with U0 a uniform random variable from U [0, 1]. This means, the initial states are probabilistically

equivalent.

Equivalence of continuous evolution From t ≥ τ0, the PDPDCPN continuous state Xt is

according to the ordinary differential equation dXt = f(θ0, Xt)dt until the first jump occurs, where

f is formed by the token colour functions VP corresponding to the places in which the DCPN tokens

reside. This equation has a unique solution Xt = X0 +
∫ t
τ0
f(θ0, Xs)ds = φθ0,X0,t−τ0 .

For t > τ0, up until the first jump, the PDPDCPN continuous state is pathwise equivalent to the

DCPN continuous state: At times t when no jump occurs, the PDPDCPN evolves according to f and

3.6 Dynamically coloured Petri nets into piecewise deterministic Markov processes 59

the DCPN process evolves according to V = {VP ;P ∈ P}. Through the mapping between f and

V developed above, these evolutions provide pathwise equivalent processes, i.e., for all t > τ0, until

the first jump, Xt(ω) = Ct(ω) for arbitrary ω.

Equivalence of time of jumps The PDPDCPN survivor function is characterised by the com-

plementary probability distribution function for the time until the first transition is enabled. If

TG1 , . . . , T
G
k are the pre-enabled guard transitions and TD1 , . . . , T

D
ℓ are the pre-enabled delay

transitions (where k = 0 or ℓ = 0 may denote these sets to be empty) then ∂Eθ0 is constructed

from the transition guards of TG1 , . . . , T
G
k and λ(θ0, φθ0,X0,t−τ0) is constructed from the transition

delays of TD1 , . . . , T
D
ℓ and the survivor function is defined by

Γθ0,X0,t−τ0 ,

{
0 if t− τ0 ≥ t∗(θ0, X0)

exp
(
−
∫ t
τ0
λ(θ0, φθ0,X0,s−τ0)ds

)
otherwise

(3.6.3)

where t∗(θ0, X0) , inf{t− τ0 > 0 | φθ0,X0,t−τ0 ∈ ∂Eθ0}.

In DCPN, the forced jumps are represented by guard transitions; in PDP, the forced jumps

are represented by continuous state space boundary hits. Due to the into-mapping between the

boundary of the PDPDCPN state space ∂Eθ and the boundaries of the transition guards of the guard

transitions {∂GT ;T ∈ TG} and due to equivalence of continuous states Xt = Ct, the PDPDCPN

forced jumps and the DCPN forced jumps occur at the same time. The PDPDCPN spontaneous

jumps are according to a survivor function that uses a rate λ. The DCPN spontaneous jumps are

according to the delay transition rates {DT ;T ∈ TD}. Due to the into-mapping between λ and

{DT ;T ∈ TD}, the time of spontaneous jump is according to the same rate for both PDPDCPN and

DCPN. However, in this case there is no equivalence to indistinguishability. The reason is that the

PDPDCPN uses precisely one uniform random variable to generate the time of spontaneous jump,

whereas the delay transitions use one uniform random variable each (one per pre-enabled delay

transition). For this reason (except under particular circumstances), equivalence is in probability

only.

Equivalence of size of jumps The PDPDCPN state after the jump is characterised by Q, i.e.,

(θτ1 , Xτ1) = Qqf (U2, θ0, φθ0,X0,τ1−τ0), whereQ is constructed in terms of DCPN elements. At times

when a jump occurs, the PDPDCPN makes a jump according to Q, while the DCPN process makes a

jump according to F . Through the mapping between Q and F , these jumps provide equivalent

processes. However, equivalence is in probability only, since the PDPDCPN uses precisely one

uniform random variable to determine the PDPDCPN state value after the jump, whereas the DCPN

may use several uniform random variables: one for each transition that fires at the jump.

Concluding, the sample paths of the PDPDCPN and the DCPN are equivalent in probability, but

60 Dynamically coloured Petri nets

in general not up to indistinguishability. The explanation is that the initial states, the continuous

evolution mechanism and the jump mechanism are equivalent, but the mapping above does not

include a one-to-one use of U [0, 1] random variables: The PDPDCPN uses two U [0, 1] variables for

each jump: one variable to generate the time of jump, and one variable to generate the size of

jump. The DCPN uses U [0, 1] variables to determine the time of firing of delay transitions, and to

determine the tokens produced (number and colour) at the firing of any transition. The number of

variables is not always equal to two for each jump:

• In DCPN, multiple delay transitions may be pre-enabled simultaneously. They each use one

U [0, 1] random variable to determine their time of enabling. However, (with probability one)

only one of them fires. If the firing of one delay transition disables the other pre-enabled

delay transitions, then the U [0, 1] random variables of the disabled delay transitions are lost.

In the corresponding PDPDCPN situation, only one U [0, 1] variable is used.

• It may happen that a guard transition fires before a delay transition does, in which case a jump

only uses one U [0, 1] sample, i.e., to determine the tokens produced at the firing of the guard

transition. If the delay transitions are not disabled by the firing of the guard transition, then

the U [0, 1] they used to determine their time of enabling are maintained for the next jump.

• A sequence of immediate transitions firing at the same time instant (which counts as one

PDPDCPN jump) will use a sequence of U [0, 1] random variables, i.e., to determine the tokens

produced by the firing of each immediate transition.

3.6.3 Verification of P1–P4

Finally, we show that if additionally, D1–D3 are satisfied, then PDP conditions P1–P4 hold true

in the constructed PDPDCPN.

P1: This condition (local Lipschitz continuity and no explosions) follows from condition D1: since

under D1, for all P ∈ P for which C(P) 6= R0, VP is locally Lipschitz continuous, this

also holds for f(θ, x) = Col
|P|
i=1

{
Colmi

j=1{VPi
(cij)}

}
. Since under D1, VP does not produce

explosions, this also holds for f(θ, x).

P2: This condition (λ is integrable) follows from the fact that DT is integrable for all T ∈ TD:

since DT is integrable, this also holds for λ(θ, x) =
∑k

n=1DTn(c
Tn).

P3: This condition (Q measurable and Q(θ, x; θ, x) = 0) follows from the assumption that F is

measurable and from condition D2: since F is measurable, this also holds for Q. Since under

D2, after a transition firing at least one place must contain a different number of tokens, or the

colour of at least one token must have jumped (P-almost surely), we find Q(θ, x; θ, x) = 0.

3.7 Discussion of conditions of Theorem 3.2 61

P4: This condition (ENt <∞) follows from condition D3: since each transition is expected to fire

a finite number of times, we find that the number of jumps is finite, hence ENt <∞.

This completes the proof of Theorem 3.2.

3.7 Discussion of conditions of Theorem 3.2

This section discusses the conditions for Theorem 3.2 (DCPN into PDP).

3.7.1 Discussion on finite number of tokens

The first set of conditions for Theorem 3.2 is that the initial marking is deterministic, that

the initial marking does not enable a transition, that none of the transition firings enable a guard

transition, and that for t → ∞ the number of tokens remains finite. Here, the conditions on the

initial marking can be easily verified. The condition on the immediate enabling of guard transitions

is discussed in Section 3.7.4. We discuss the condition on finite number of tokens next.

This condition has been introduced in Theorem 3.2 in order to guarantee that the reachability

graph (RG) of the DCPN exists and is finite, i.e., the DCPN is bounded (see Subsection 2.2.2). The

RG consists of nodes m = (m1, . . .m|P|), where mi denotes the number of tokens in place Pi. Two

nodes m and m′ are connected by an arrow if it is possible to jump from m to m′ by the firing of

a transition or by the firing of multiple transitions in parallel at the same time. The names of these

transitions are written as labels on these arrows. The RG and its nodes are used in the construction

of PDPDCPN elements K, d and f , and indirectly also in the construction of E, λ and Q. A finite

RG makes this construction easier.

A sufficient condition for a DCPN to be bounded is if its initial marking contains a finite number

of tokens (note this is satisfied due to definition of I), and each transition, when firing, produces a

number of tokens equal to the number of tokens removed by the firing. Note that for most DCPN

applications that we made in practice, these sufficient conditions are satisfied (see also Chapter 5)

hence there has been no real practical reason to explore options where any of mi could grow to

infinity.

From a theoretical point of view, however, we note that there are options to relax the condition

of finite number of tokens. Below, we give a discussion of how this could be done, but we leave the

corresponding update of Theorem 3.2 to further research.

If the restriction of bounded number of tokens is removed, then in the proof of Theorem 3.2,

we get a reachability graph (RG) which has an infinite, though still countable number of nodes.

Such infinite RG can be represented by a coverability graph (see Definition 2.12). A symbol ̟

is used in the nodes of the coverability graph to represent ‘any number of tokens’ in a particular

62 Dynamically coloured Petri nets

place. Since the number of places and the number of transitions in the DCPN are finite, there is a

finite permutation of labelled arrows in the coverability graph, hence, with making use of the ‘any

number of tokens’ symbol, the number of nodes in the coverability graph is finite. With this, the

effects on the proof of Theorem 3.2 are the following:

K: If the RG is infinite, the number of elements in K will be infinite as well. For PDP,

countability is sufficient, hence an infinite K still satisfies PDP conditions.

d: This element was constructed as follows: for each θ ∈ K, corresponding with node m =

(m1, . . . , m|P|) in the RG, d(θ) =
∑|P|

i=1min(Pi), where n(Pi) is defined through C(Pi) =

Rn(Pi). This yields that if some of the mi could grow to infinity (in the coverability graph this

is denoted by the ̟ symbol), then d(θ) could become infinite as well. Since d represents the

number of elements in vectorXt, an infinite d is an undesired situation. However, note that as

long as mi <∞ if n(Pi) > 0 and mi = ∞ (or mi = ̟) only if n(Pi) = 0, then d(θ) <∞.

f : This element was constructed as follows: For each θ ∈ M and x ∈ Eθ, f(θ, x) =

Col
|P|
i=1

{
Colmi

j=1{VPi
(cij)}

}
, where x = Col

|P|
i=1

{
Colmi

j=1{cij}
}

and θ corresponds to (m1, . . . ,

m|P|). Here Col0j=1{·} , ∅ and if C(Pi) = R0 for particular Pi, then VPi
= ∅. We find again

that as long as mi < ∞ if n(Pi) > 0 and mi = ∞ (or mi = ̟) only if n(Pi) = 0, then f is

well defined.

E, λ, Q: The reachability graph is used in the construction of these components in order to

determine which transitions are pre-enabled in a particular token distribution. This can also

be handled by the coverability graph.

Note that the above effects pose no restrictions on the use of the ̟ symbol in vanishing nodes.

Concluding: theoretically, the condition on finite number of tokens might be relaxed to the

following: “for t → ∞, the number of coloured tokens remains finite, i.e., tokens in places for

which C(P) 6= R0”.

3.7.2 Discussion on Condition D1 (local Lipschitz and no explosions)

Both the local Lipschitz condition and the no-explosions condition are posed on PDP, hence it is

natural to pose them for DCPN as well. The local Lipschitz condition holds true if for any compact

D ⊂ C(P) there exists a constant LP such that |VP (b) − VP (a)| ≤ LP |b − a| for all a, b ∈ D.

The no-explosions condition holds true if a linear growth condition holds true for VP . For example,

following [Øk02, Theorem 5.2.1], there are no explosions if |VP (c)| ≤ KP (1 + |c|), c ∈ C(P) for

some constant KP . For DCPN, such linear growth conditions need to be satisfied by VP for all

P ∈ P .

3.7 Discussion of conditions of Theorem 3.2 63

3.7.3 Discussion on Condition D2 (recognisable jumps)

Condition D2 was introduced to ensure that, once the DCPN is mapped to a PDPDCPN, PDP

condition Q(θ, x; θ, x) = 0 holds true, which ensures that all jumps are recognisable. Condition

D2 holds if the reachability graph of the DCPN does not contain self-loops, where a self-loop is a

non-vanishing node in the graph with an arrow directly back to itself, or a non-vanishing node in

the graph with a sequence of vanishing nodes, connected by arrows in one direction, and with an

arrow back to the first non-vanishing node. If the reachability graph does contain a self-loop, then

the firing measure(s) of the transition(s) that is (are) on the label of the self-loop arrow need to be

inspected. If the self-loop contains one transition and its firing measure satisfies FT (·, c; c) = 0

then D2 holds true. If FT (·, c; c) > 0 for any reachable c then D2 does not hold true. If a self-loop

contains a sequence of transitions, D2 holds true if the consecutive use of their firing measures

cannot produce a token of a colour equal to that of the token removed by the first transition in the

sequence.

3.7.4 Discussion on Condition D3 (finite number of firings)

Under condition D3, in a finite time interval, each transition is expected to fire a finite number of

times. This condition on DCPN has been introduced in Theorem 3.2, in order to guarantee that when

the DCPN is mapped to a PDP, condition P4 is satisfied for the resulting PDPDCPN, i.e., the resulting

PDPDCPN makes a finite number of jumps in finite time. More formally: with Nt =
∑

k 1{t≥τk}, for

every starting point (θ, x) ∈ E and for all t ∈ R+, ENt <∞.

As indicated in Remark 3.1, [Dav93, Page 60] gives sufficient conditions under which P4 is

satisfied for PDP. Below, we translate these to sufficient conditions under which D3 is satisfied for

DCPN. First we recall the sufficient conditions for P4: P4 is satisfied if (1) below is satisfied, as

well as (2a) or (2b):

(1) λ is bounded.

(2a) Define t∗(θ, x) , inf{t − τ > 0 | φθ,x,t−τ ∈ ∂Eθ}, i.e., t∗(θ, x) is the time until the flow

hits the boundary of its state space, if the flow starts in (θ, x) at time τ . Then ∀(θ, x) ∈ E,

t∗(θ, x) = ∞.

(2b) For some χ > 0 and with t∗(θ, x) as above, define Aχ = {(θ, x) ∈ E | t∗(θ, x) ≥ χ}. Then

Q(Aχ; θ, x) = 1 for all (θ, x) ∈ ∂E.

Sufficient condition (1) ensures that there will not be an infinite number of spontaneous jumps in

finite time; (2a) ensures that there are no forced jumps; (2b) ensures that the process always jumps

to a state from which it takes some time χ > 0 to reach the boundary.

Before we can translate this to sufficient conditions for D3, note that

64 Dynamically coloured Petri nets

• An immediate transition in a DCPN can be regarded as a delay transition with an infinite

jump rate (intensity): DT = ∞.

• One way to put some ‘distance’ between forced jumps in a DCPN, is if after a guard transition

has fired, only delay transitions are pre-enabled.

• The previous idea can be extended by noting that a finite number of jumps is still guaranteed

if there are at most two forced jumps before a delay transition is fired, or three

Using these notes, we are now prepared to translate (1)-(2a)-(2b) above: Condition D3 is satisfied

if (1’) below is satisfied, as well as (2a’) or (2b’) or (2c’):

(1’) For all T ∈ TD, DT is bounded. In addition, all possible firing sequences (see Definition 2.8)

of immediate transitions are finite.

(2a’) TG = ∅. Alternatively, TG 6= ∅ but for all T ∈ TG, ∂GT is never reached by its input token

colours.

(2b’) Define ET = {0, 1}|Aout(T)| × C(P (Aout(T))), define tDCPN∗ (c, T) as the time until the next

guard transition in the DCPN is enabled after transition T has fired with c as vector of input

token colours, and for some χ > 0 define Aχ = {(e′, x′) ∈ ET | tDCPN∗ (c, T) ≥ χ}. Then

we have: for all T ∈ TG and for some χ > 0: FT (Aχ; c) = 1 for all c ∈ ∂GT .

(2c’) In the DCPN all possible firing sequences (see Definition 2.8) of guard transitions have finite

length.

Sufficient condition (1’) can be verified by inspection of all DT (T ∈ TD), and by inspection of the

reachability graph to see if there are only finite firing sequences of immediate transitions.

Sufficient condition (2a’) can be verified by verifying if TG = ∅, and if TG 6= ∅ to verify that

no guard transition becomes enabled. Sufficient conditions for a guard transition to not become

enabled are if such transition does not become pre-enabled, i.e., it cannot be reached from any

reachable marking (the transition is dead, see Definition 2.17), or if the boundary of its transition

guard ∂GT is of a size or shape such that it is never reached by the transition’s input tokens.

Sufficient condition (2b’) can be verified by inspection of all firing measures of the DCPN and

comparing their output with the guards of all guard transitions.

Sufficient condition (2c’) can be verified by inspection of the reachability graph to see if all

firing sequences of guard transitions have finite length.

Finally, we discuss the condition posed in Theorem 3.2 that none of the transition firings enable

a guard transition. This condition has been introduced to make sure that the process state does not

jump to the boundary of its state space, but jumps into an open subset. This condition is covered by

condition (2b’) above.

3.8 Concluding remarks 65

It is also noted that a guard transition that is always immediately enabled when it is pre-enabled,

is in effect an immediate transition, and is better modelled as such.

3.8 Concluding remarks

Piecewise deterministic Markov processes (PDPs) can be used to describe virtually all

continuous-time stochastic processes and to make the power of stochastic analysis available.

However, for complex practical problems with many interactions and sub-behaviours it is often

difficult to directly develop a PDP model, and have it verified both by mathematical and by

multiple operational domain experts. This chapter has introduced a novel Petri net, which is named

dynamically coloured Petri net (DCPN) and has shown that under some mild conditions, any DCPN

can be mapped into the elements of a PDP, such that the resulting PDP and the DCPN process are

probabilistically equivalent. Moreover, it is shown that the elements of any PDP with a finite

discrete state domain can be mapped into a DCPN, such that the resulting DCPN process and the

PDP are pathwise equivalent. In [Van04, BLB05] such relation between elements is referred to as

bisimilarity: The PDP elements and the DCPN are bisimilar.

The key result of this chapter is that this is the first time that proof of the existence of equivalence

between PDPs and Petri nets has been established. This significantly extends the modelling power

hierarchy of [MT94], [MFT00] in terms of Petri nets and Markov processes, see Figure 1.1. Due

to the equivalence relations, PDP theoretical results like stochastic analysis, stability and control

theory, also apply to DCPN stochastic processes. The mapping of DCPN to PDP implies that

any specific DCPN stochastic process can be analysed as if it is a PDP, often without the need

to first apply the transformation into a PDP. Because of this, for accident risk modelling in air

transport operations, in [BBB+01] DCPNs are adopted for their specification power and for their

PDP inherited stochastic analysis power. Here, DCPN are used as a basis for a Monte Carlo

simulation, and the PDP-inherited stochastic analysis properties are used to make the simulations

and analysis more efficient.12

It is also noted that, driven by practical applications to air transport operations, the DCPN

modelling power is enriched by Petri net features beyond those that were actually required to prove

equivalence to PDP, such as:

• Inhibitor arcs — these allow particular model structures to be made more compact and

support modelling of priority constructs.

• Enabling arcs — these allow different submodels to be connected without tokens disappear-

ing unwanted, and they support modelling of synchronisation constructs.

12For an example that illustrates this, we refer to Section 6.3.

66 Dynamically coloured Petri nets

• Immediate transitions — these allow decomposing certain complex Petri net transitions into

simpler graphical structures.

• Multiple tokens to exist in the Petri net, rather than just one — this supports compositional

specification and synchronisation constructs and considerably reduces the number of places

in the Petri net graph.

• Option to include tokens that get no colour — this avoids having to introduce dummy colours

where colours are not required to capture part of the operation.

For DCPN subclasses without one or more of these additional features, Theorems 3.1 and 3.2 still

hold true, and in fact their proof will be simpler.

As a final concluding remark, we note that there is related research on equivalence relationships

between PDP and stochastic hybrid automata. Here, a stochastic hybrid automaton is defined

as a collection of elements containing a countable set of discrete variables, a mapping of each

of the discrete variables into Euclidean set, a set of stochastic differential equations, a family of

stochastic kernals for the size of jumps, and a transition rate function for spontaneous jumps, e.g.,

[Buj05]. Through a series of studies, [SV05a, SV05b, Str05] developed a powerful compositional

specification approach for automaton of PDP type. The formalism was named communicating

piecewise deterministic Markov process (CPDP). Under certain conditions (similar to those in

Theorem 3.2 of DCPN into PDP), the evolution of the state of a CPDP can be modelled as a PDP.

An extended CPDP framework has been developed called value-passing CPDP. This framework

provides richer interaction possibilities, where components can communicate information about

their continuous states to each other.

3.9 Appendix: Characterisation of Q in terms of DCPN ele-

ments

This appendix characterises the PDP transition measure Q in terms of DCPN elements, as part

of the proof of Theorem 3.2.

For each θ ∈ K, x ∈ Eθ, θ
′ ∈ K and A ⊂ Eθ′ , the value of Q(θ′, A; θ, x) equals the probability

that if a jump occurs, and if the value of the PDP just prior to the jump is (θ, x), then the value of

the PDP just after the jump is in (θ′, A) (= {θ′} ×A). Probability Q(θ′, A; θ, x) is characterised in

terms of the DCPN by the reachability graph (RG), elements D, G and Rules R0–R4 and the set F ,

as below. This is done in four steps:

1. Determine which transitions are pre-enabled in (θ, x).

3.9 Appendix: Characterisation of Q in terms of DCPN elements 67

2. For each pre-enabled transition, determine the probability with which it is enabled in (θ, x).

3. For each pre-enabled transition, determine whether its firing can possibly lead to discrete

state θ′.

4. Use the results of the previous two steps and the set of firing measures to characterise Q.

Step 1: Determine which transitions are pre-enabled in (θ, x).

Consider all arrows in the RG leaving node θ. These arrows are labelled by names of transitions

which are pre-enabled in θ, for example T1 (if T1 is pre-enabled in θ), T1+T2 (if T1 and T2 are both

pre-enabled and there is a non-zero probability that they fire simultaneously), etc. Therefore the

arrows leaving θ may be characterised by these labels. Denote the multi-set of arrows, characterised

by these labels, by Hθ. This set is a multi-set since there may exist several arrows with the same

label (e.g., if one transition is pre-enabled by different sets of input tokens). We use notation

H ∈ Hθ for an element H of Hθ (e.g., H = T1 represents an arrow with T1 as label), and notation

T ∈ H for a transition T in label H (e.g., as in H = T + T1). Multi-set Hθ cannot contain

immediate transitions since θ ∈ K.

Step 2: For each pre-enabled transition, determine the probability with which

it is enabled in (θ, x).

Given that a jump occurs in (θ, x), the set of transitions that will actually fire in (θ, x) is not

empty, and is given by one of the labels in Hθ. In the following, we determine, for each H ∈ Hθ,

the probability pH(θ, x) that all transitions in label H will fire.

• Denote the vector of input colours of transition T in a particular label by cxT . For a transition in

a label this vector is uniquely determined since we consider transitions with multiple vectors

of input colours separately in the multi-set Hθ.

• Consider the multi-set HG
θ = {H ∈ Hθ | ∀T ∈ H : T ∈ TG and cxT ∈ ∂GT }.

• If HG
θ 6= ∅ then this set contains with probability one all transitions that are enabled in (θ, x).

Rules R1–R4 are used (R0 is not applicable) to determine for each H ∈ HG
θ the probability

with which the transitions in label H will actually fire:

– Rules R1 and R3 are used as follows: Determine set HR1R3
θ = {H ∈ HG

θ | ∃H ′ ∈
HG
θ , H $ H ′}. This set thus exists of those labels that form a real subset of other

labels. Then for all H ∈ HR1R3
θ , pH(θ, x) = 0.

68 Dynamically coloured Petri nets

– Rules R2 and R4 are used as follows: If the multi-set HG
θ −HR1R3

θ containsm elements,

then each of these labels gets a probability pH(θ, x) = 1/m.

– For all H ∈ Hθ −HG
θ +HR1R3

θ , pH(θ, x) = 0.

• If HG
θ = ∅ then only Delay transitions can be enabled in (θ, x). Consider the multi-set

HD
θ = {H ∈ Hθ | ∀T ∈ H : T ∈ TD}. Each H ∈ HD

θ consists of one delay transition, with

pH(θ, x) =
DH(cx

H
)

Σ
T∈HD

θ
DT (cx

T
)
. For all H ∈ Hθ −HD

θ , pH(θ, x) = 0.

Step 3: For each pre-enabled transition, determine whether its firing can

possibly lead to discrete state θ′.

In the RG, consider nodes θ and θ′ and delete all other nodes that are elements of K, including

the arrows attached to them. Also, delete all arrows from θ for which pH(θ, x) = 0 and delete all

nodes and arrows that are not part of a directed path from θ to θ′. The residue is named RGθθ′ .

Then, if θ and θ′ are not connected in RGθθ′ by at least one path, a jump from θ to θ′ is not possible.

Step 4: Use the results of the previous two steps and the set of firing measures

to characterise Q.

From the previous step we have Q(θ′, A; θ, x) = 0 if θ and θ′ are not connected in RGθθ′ by

at least one directed path. If θ and θ′ are connected then in RGθθ′ one or more paths from θ to

θ′ can be identified. Each such path may consist of only one arrow, or of sequences of directed

arrows that pass nodes that enable immediate transitions. All arrows are labelled by names of

transitions, therefore the paths between θ and θ′ may be characterised by the labels on these arrows,

i.e., by the transitions that consecutively fire in the jump from θ to θ′. Denote the multi-set of paths,

characterised by these labels, by Zθθ′ . Examples of elements of Zθθ′ are T1 (if T1 is pre-enabled

in θ and its firing leads to θ′), T1 + T2 (if there is a non-zero probability that T1 and T2 will fire at

exactly the same time, and their combined firing leads to θ′), T4 ◦ T3 (if T3 is pre-enabled in θ, its

firing leads to the immediate transition T4 being enabled, and the firing of T4 leads to θ′), etc.

Next, we factorise Q by conditioning on the path Z ∈ Zθθ′ along which the jump is made.

Under the condition that a jump occurs:

Q(θ′, A; θ, x) =
∑

Z∈Zθθ′

pθ′,x′|θ,x,Z(θ
′, A | θ, x, Z)× pZ|θ,x(Z | θ, x),

where pθ′,x′|θ,x,Z(θ
′, A | θ, x, Z) denotes the conditional probability that the DCPN state immedi-

ately after the jump is in (θ′, A), given that the DCPN state just prior to the jump equals (θ, x),

given that the set of transitions Z fires to establish the jump. Moreover, pZ|θ,x(Z | θ, x) denotes the

3.9 Appendix: Characterisation of Q in terms of DCPN elements 69

conditional probability that the set of transitions Z fires, given that the DCPN state immediately

prior to the jump equals (θ, x).

In the remainder of this appendix, first pZ|θ,x(Z | θ, x) is characterised for each Z ∈ Zθθ′ . Next,

pθ′,x′|θ,x,Z(θ
′, A | θ, x, Z) is characterised for each Z ∈ Zθθ′ .

Characterisation of pZ|θ,x(Z | θ, x) for each Z ∈ Zθθ′

Each path represented by Z starts with an arrow that leaves node θ. Denote the label on this

arrow by Z ∩ Hθ. This label consists of one or more guard transitions or of one delay transition.

From Step 2, pH(θ, x), with H = Z ∩Hθ, is the probability that all transitions in this label will fire.

If the arrow that leaves node θ ends at θ′, then Z = Z ∩ Hθ and pZ|θ,x(Z | θ, x) is determined by

pZ|θ,x(Z | θ, x) = pZ(θ, x) = pZ∩Hθ
(θ, x).

If the arrow that leaves node θ does not also end at θ′, then Z equals a series of labels that also

include immediate transitions. The probability pZ∩Hθ
(θ, x) is then equally divided among those

paths Z that have the same initial arrow. This yields:

pZ|θ,x(Z | θ, x) = pZ∩Hθ
(θ, x)

|{Z ′ ∈ Zθθ′ | Z ′ ∩ Hθ = Z ∩ Hθ}|

where |{·}| is the number of elements in {·}, and where Z ′ ∩ Hθ = Z ∩ Hθ is to be interpreted in

the multi-set sense, i.e., the initial arrows should be equal, not only should their labels be the same.

With this, pZ|θ,x(Z | θ, x) is uniquely characterised.

Characterisation of pθ′,x′|θ,x,Z(θ
′, A | θ, x, Z) for each Z ∈ Zθθ′

For probability pθ′,x′|θ,x,Z(θ
′, A | θ, x, Z), first notice that both (θ, x) and (θ′, x′) represent states

of the complete DCPN, while the firing of Z changes the DCPN only locally. This yields that in

general, several tokens stay where they are when the DCPN jumps from θ to θ′ while the set Z of

transitions fires.

• pθ′,x′|θ,x,Z(θ
′, A | θ, x, Z) = 0 if for all x′ ∈ A, the components of x and x′ that correspond

with tokens not moving to another place when transitions Z fire, are unequal.

In all other cases:

• Assume Z consists of one transition T that, given θ and x, is enabled and will fire. Define

again cxT as the vector containing the colours of the input tokens of T ; cxT may not be unique.

For each cxT that can be identified, a random hybrid vector from FT (·, ·; cxT) provides a vector

e′ that holds a one for each output arc along which a token is produced and a zero for each

output arc along which no token is produced, and it provides a vector c′ containing the colours

70 Dynamically coloured Petri nets

of the tokens produced. These elements together define the size of the jump of the DCPN

state. This gives:

pθ′,x′|θ,x,Z(θ
′, A | θ, x, Z) =

∑

cx
T

∑

e′

∫

c′

FT (e
′, c′; cxT)× 1{θ′,A;e′,c′,cx

T
}dc

′,

where 1{θ′,A;e′,c′,cx
T
} is the indicator function for the event that if tokens corresponding with

cxT are removed by T and tokens corresponding with (e′, c′) are produced, then the resulting

DCPN state is in (θ′, A).

• If Z consists of several transitions T1, . . . , Tk that, given θ and x, will all fire at the same time,

then the firing measure FT in the equation above is replaced by a product of firing measures

for transitions T1, . . . , Tk:

pθ′,x′|θ,x,Z(θ
′, A | θ, x, Z) =

∑

cx
T1
,...,cx

Tk

∑

e′1,...,e
′
k

∫

c′1,...,c
′
k

FT1(e
′
1, c

′
1; c

x
T1
)× · · ·×

×FTk(e
′
k, c

′
k; c

x
Tk
)× 1{θ′,A;e′1,c′1,cxT1 ,...,e

′
k
,c′

k
,cx

Tk
}dc

′
1 . . . dc

′
k,

where 1{θ′,A;e′1,c′1,cxT1 ,...,e
′
k
,c′

k
,cx

Tk
} denotes indicator function for the event that the combined

removal of cxT1 through cxTk by transitions T1 through Tk, respectively, and the combined

production of (e′1, c
′
1) through (e′k, c

′
k) by transitions T1 through Tk, respectively, leads to a

DCPN state in (θ′, A).

• If Z is of the form Z = Tj ◦ Tk, with Tj an immediate transition, then the result is:

pθ′,x′|θ,x,Z(θ
′, A | θ, x, Z) =

∑

cx
Tk

∑

e′j ,e
′
k

∫

c′j ,cj,c
′
k

FTj (e
′
j, c

′
j ; cj)× FTk(e

′
k, c

′
k; c

x
Tk
)×

×1{θ′,A;e′
j
,c′

j
,e′

k
,c′

k
,cx

T
}dc

′
jdcjdc

′
k,

where 1{θ′,A;e′j,c′j ,e′k,c′k,cxT } denotes indicator function for the event that the removal of cxTk and

the production of (e′k, c
′
k) by transition Tk leads to Tj having a vector of colours of input

tokens cj and the subsequent removal of cj and the production of (e′j , c
′
j) by transition Tj

leads to a DCPN state in (θ′, A).

• In cases like Z = Tm ◦ Tj ◦ Tk, with Tj and Tm immediate transitions, the firing measures of

this sequence of transitions are multiplied in a similar way as above.

With this, PDP transition measure Q of the constructed PDP is uniquely characterised in terms

of DCPN elements.

Chapter 4

Stochastically and dynamically coloured

Petri nets

4.1 Introduction

Although PDPs form a very general class of continuous-time Markov processes which include

both discrete and continuous processes, PDPs do not include diffusion. Diffusion exists in air

transport operations for example in the form of stochastic variations around position and velocity

of an aircraft, due to, e.g., weather, navigation or surveillance uncertainties, or engine power

fluctuations. In this chapter, we extend PDP to GSHP (general stochastic hybrid process) by

inclusion of diffusion. With this extension, between jumps, the process {Xt} follows the solution

of a θt-dependent stochastic (rather than ordinary) differential equation. GSHP defines a powerful

and useful class of processes that have support in stochastic analysis.

GSHP can be defined through various related formalisms. In the main part of this chapter, we

adopt the one developed in [Blo03] and [BBEP03], in which GSHP is defined as the solution of a

hybrid stochastic differential equation (HSDE) on a hybrid state space. The development of this

formalism, in a version without forced jumps, started in [Blo90] and was published in [Blo03].

Forced jumps were added in [BBEP03]. Related formalisms were also studied in, e.g., [Kry06],

and an overview of various related HSDE versions is given in [KBB07]. In [BL06], GSHP are

alternatively defined as the execution of a stochastic hybrid automaton named general stochastic

hybrid system (GSHS).

The aim of the current chapter is to

• introduce an extension of DCPN, referred to as stochastically and dynamically coloured Petri

net (SDCPN), which covers diffusion;

• explain HSDE and its HSDE solution process (i.e., the GSHP).

72 Stochastically and dynamically coloured Petri nets

• show that there exist equivalence relations between SDCPN-processes and HSDE-processes.

• show that there also exist equivalence relations between SDCPN-processes and GSHS-

processes.

The existence of such equivalence relations allows combining the specification power of Petri nets

with the stochastic analysis power of GSHP. In addition, it extends the power hierarchy of Figure

1.1 with GSHP and with GSHP-related Petri nets.

GSHP are a generalisation of PDP by the inclusion of a Wiener process in the continuous

evolution. Intuitively, a GSHP is a copy of PDP with replacement of the ordinary differential

equations by stochastic ones. Formally, however, this intuitive idea poses some challenges,

particularly regarding the timing of jumps. As a result, the proof of equivalence between SDCPN-

processes and GSHP is not a straightforward extension of the material in Chapter 3.

This chapter is organised as follows: Section 4.2 provides a few definitions and propositions on

stochastic processes that are necessary to properly understand the extensions of this chapter. Section

4.3 defines SDCPN. Section 4.4 describes HSDE. Section 4.5 shows that for each arbitrary HSDE

we can construct an equivalent SDCPN. Section 4.6 shows that for each arbitrary SDCPN we can

construct an equivalent HSDE. Section 4.7 discusses the conditions under which the equivalence

relations hold true. Section 4.8 describes GSHS and how it is different from HSDE, shows that for

each arbitrary GSHS we can construct an equivalent SDCPN, and that for each arbitrary SDCPN

we can construct an equivalent GSHS. Finally, Section 4.9 draws conclusions.

4.2 Preliminaries

This section provides a few definitions and propositions on stochastic processes that are

necessary to properly understand the extensions of the current chapter. More specifically, the

section defines Poisson random measure and explains how to generate its points.

Consider a complete stochastic basis (Ω,ℑ, {ℑt},P,T), with probability space (Ω,ℑ,P), right

continuous filtration {ℑt}, and time index T = R+ = [0,∞).

A Poisson random measure pP (dt, dz) on R+ ×Z is an extended Poisson random measure (see

Appendix A), the intensity measure ν of which satisfies ν({t} × Z) = 0, for all t. Here, ν(A) =

E{pP (A)}, where E{·} denotes expectation. Poisson random measure satisfies the memoryless

property, i.e., for everyA, the variable pP (A) is independent of the σ-algebra ℑt. A Poisson random

measure is said to be homogeneous if its intensity measure is of the form ν(dt, dz) = dt · µ̃(dz).
Intuitively, a Poisson random measure pP (dt, dz) on R+×Z with intensity measure ν(dt, dz) =

E{pP (dt, dz)} defines an increasing sequence of arrival times τn at exponentially distributed

intervals (Poisson process), which each generate a "mark" zn. The Poisson process property comes

4.2 Preliminaries 73

from the memoryless property. The Poisson random measure pP (dt, dz) assigns unit mass to

({τn}, {zn}) if there is an arrival at time τn of mark zn. This yields:

pP (dt, dz) =
∑

n≥1

1{τn∈[t,t+dt)} · 1{zn∈[z,z+dz)}

In the special case where the Poisson random measure is homogeneous and the mark space Z is

bounded, e.g., Z = [0, C], we can generate points in a straightforward way: Let Nt be a standard

Poisson process with intensity λ. We denote by τn, n = 1, 2, . . . the jump times of Nt. Let {zn},

n ≥ 1 be a sequence of i.i.d. random variables with uniform distribution on Z, independent of Nt,

with µL(Z) = C < ∞, where µL is the Lebesgue measure. In this special case we can represent

the Poisson random measure pP (dt, dz) with intensity dt · dz as a counting measure associated to

the marked point process {τn, zn}, n ≥ 1. Now, we can use that

pP ((0, t],Z) =
∑

n≥1

1{τn∈(0,t]} · 1{zn∈Z}

=
∑

n≥1

1{τn∈(0,t]},

hence pP ((0, t],Z) is simply the number of points τn generated by Nt during (0, t]. Since Nt is a

Poisson process with intensity λ, we get E{pP ((0, t],Z)} = λ · t. On the other hand, the intensity

of pP (dt, dz) was given as dt · dz, therefore, E{pP ((0, t],Z)} = t · C. We find that λ = C, i.e.,

the intensity of the Poisson arrivals τn is equal to the ‘size’ of the mark space. We see that if Z

is bounded and if pP is homogeneous, then pP (dt, dz) can be generated just by sampling random

variables ({τn}, {zn}), n = 1, 2, . . ., with τn − τn−1 ∼ Exp(C) (exponential with intensity 1/C)

and zn ∼ U [Z] (uniform on Z). Note that if Z is not bounded, then pP (dt, dz) is still well defined,

but the above way of working would generate infinitely many samples.

Next, we take Z = [0, C] and consider the Poisson random measure on a subarea of the mark

space, e.g., pP (dt, [0,Λ]), with Λ ≤ C and we write

pP (dt, [0,Λ]) =
∑

n≥1

1{τn∈[t,t+dt)} · 1{zn∈[0,Λ)}

=
∑

n≥1

1{τn∈[t,t+dt)} · 1{zn∈Z} · 1{zn∈[0,Λ)}

The Poisson random measure generates random variables ({τn}, {zn}), n = 1, 2, . . ., with τn −
τn−1 ∼ Exp(C) and zn ∼ U [0, C], however, those points ({τn}, {zn}) for which zn > Λ lead to

1{zn∈[0,Λ]} = 0 hence are rejected. It can be shown that the marks that are not rejected are uniformly

distributed on [0,Λ] and have exponential interarrival times with intensity 1/Λ. This is proven by

74 Stochastically and dynamically coloured Petri nets

the following two propositions:

Proposition 4.1. Consider c ∈ [0,∞), λ ∈ [0, c], and a sequence of random samples U1, U2, . . .

from U [0, c]. Define r ≥ 1 such that U1 > λ, . . . , Ur−1 > λ and Ur ≤ λ, and take V = Ur. Then

random variable V has a uniform distribution on [0, λ].

Proof. For v ∈ [0, λ], P{V ≤ v} = P{U ≤ v | U ≤ λ} =
P{U ≤ v}
P{U ≤ λ} =

v

λ
.

Proposition 4.2. Consider c ∈ [0,∞) and λ ∈ [0, c]. Then the following two random variables

T and Y have the same probability distribution: T ∼ Exp(λ) and Y ∼ Exp(c; accept with λ/c).

Here, Exp(λ) denotes an exponential distribution with intensity 1/λ and Exp(c; accept with λ/c)

denotes a distribution where a sequence Y1, Y2, . . . of samples from Exp(c) are consecutively either

accepted (with probability λ/c) or rejected (with probability 1− λ/c), and where

Y =

q∑

n=1

Yn, with q = argmin
i
{Yi is accepted}

(i.e., Y1, . . . , Yq−1 have been rejected and Yq is the first sample that is accepted).

Proof. Due to T ∼ Exp(λ), we have P{T > t} = e−λt.

Suppose we have a sequence of independent exponentially distributed variables Y1, Y2, . . .,

with Yi ∼ Exp(c) for all i. Then P{Y > t} = P{Y1 > t} + P{Y1 ≤ t, Y1 is rejected, Y1 +

Y2 > t} + P{Y1 + Y2 ≤ t, Y1 and Y2 are rejected, Y1 + Y2 + Y3 > t} + P{Y1 + Y2 + Y3 ≤
t, Y1, . . . , Y3 are rejected, Y1 + Y2 + Y3 + Y4 > t} + · · · . Now,

P{Y1 > t} = e−ct, and

P{Y1 ≤ t, Y1 is rejected, Y1 + Y2 > t} =

=
c− λ

c

∫ t

0

∫ ∞

t−y1
ce−cy1 · ce−cy2dy2dy1

= (c− λ)

∫ t

0

e−cy1 ·
[
−e−cy2

]∞
t−y1 dy1

= (c− λ)

∫ t

0

e−cy1 · e−c(t−y1)dy1

= (c− λ)e−ct
∫ t

0

dy1

= (c− λ)e−ctt, and

4.2 Preliminaries 75

P{Y1 + Y2 ≤ t, Y1 and Y2 are rejected, Y1 + Y2 + Y3 > t} =

=
(c− λ)2

c2

∫ t

0

∫ t−y1

0

∫ ∞

t−y1−y2
ce−cy1 · ce−cy2 · ce−cy3dy3dy2dy1

= (c− λ)2
∫ t

0

∫ t−y1

0

e−c(y1+y2) ·
[
−e−cy3

]∞
t−y1−y2 dy2dy1

= (c− λ)2
∫ t

0

∫ t−y1

0

e−c(y1+y2) · e−c(t−y1−y2)dy2dy1

= (c− λ)2
∫ t

0

∫ t−y1

0

e−ctdy2dy1

= (c− λ)2e−ct
∫ t

0

(t− y1)dy1

= (c− λ)2e−ct
[
−1

2
(t− y1)

2

]t

0

= (c− λ)2e−ct
1

2
t2,

and more generally,

P

{
n∑

i=1

Yi ≤ t, Y1, . . . , Yn are rejected,

n+1∑

i=1

Yi > t

}
=

=
(c− λ)n

cn

∫ t

0

∫ t−y1

0

· · ·
∫ t−Σn−1

i=1 yi

0

∫ ∞

t−Σn
i=1yi

cne−cΣ
n
i=1yi · ce−cyn+1dyn+1 · · · dy1

= (c− λ)n
∫ t

0

∫ t−y1

0

· · ·
∫ t−Σn−1

i=1 yi

0

e−cΣ
n
i=1yi ·

[
−e−cyn+1

]∞
t−Σn

i=1yi
dyn · · · dy1

= (c− λ)n
∫ t

0

∫ t−y1

0

· · ·
∫ t−Σn−1

i=1 yi

0

e−cΣ
n
i=1yi · e−c(t−Σn

i=1yi)dyn · · · dy1

= (c− λ)n
∫ t

0

∫ t−y1

0

· · ·
∫ t−Σn−1

i=1 yi

0

e−ctdyn · · · dy1

= (c− λ)ne−ct
∫ t

0

∫ t−y1

0

· · ·
∫ t−Σn−2

i=1 yi

0

(t−
n−1∑

i=1

yi)dyn−1 · · · dy1

= (c− λ)ne−ct
∫ t

0

∫ t−y1

0

· · ·
∫ t−Σn−3

i=1 yi

0

[
−1

2
(t−

n−1∑

i=1

yi)
2

]t−Σn−2
i=1 yi

0

dyn−2 · · · dy1

= (c− λ)ne−ct
∫ t

0

∫ t−y1

0

· · ·
∫ t−Σn−3

i=1 yi

0

1

2
(t−

n−2∑

i=1

yi)
2dyn−2 · · · dy1

= (c− λ)ne−ct
∫ t

0

∫ t−y1

0

· · ·
∫ t−Σn−4

i=1 yn

0

1

2

[
−1

3
(t−

n−2∑

i=1

yi)
3

]t−Σn−3
i=1 yi

0

dyn−3 · · · dy1

76 Stochastically and dynamically coloured Petri nets

= (c− λ)ne−ct
∫ t

0

∫ t−y1

0

· · ·
∫ t−Σn−4

i=1 yi

0

1

2 · 3(t−
n−3∑

i=1

yi)
3dyn−3 · · · dy1

= · · ·

= (c− λ)ne−ct
∫ t

0

1

(n− 1)!
(t− y1)

n−1dy1

= (c− λ)ne−ct
1

(n− 1)!

[
−1

n
(t− y1)

n

]t

0

= (c− λ)ne−ct
1

n!
tn

Therefore,

P{Y > t} = e−ct + (c− λ)e−ctt + (c− λ)2e−ct
1

2
t2 + (c− λ)3e−ct

1

6
t3 + · · ·

= e−ct
∞∑

n=0

(c− λ)n
tn

n!

= e−ct · e(c−λ)t

= e−λt

= P{T > t}

which completes the proof of Proposition 4.2

These propositions are particularly useful in case we consider pP (dt, [0,Λ]), with Λ not a

constant. The specific extension of interest is where Λ is a function of a stochastic process state,

e.g., Λ = Λ(ξt). If {ξt} is a stochastic process we cannot, at times< t, directly generate exponential

random variables with intensity 1/Λ(ξt), since the value of Λ(ξt) may not be known until we are at

time t. However, the combined use of Propositions 4.1 and 4.2 allows to generate points ({τ}, {z})
from this Poisson random measure in a straightforward manner: Consider a sequence (Yi, Ui) of

pairs where Yi ∼ Exp(C) and Ui ∼ U [0, C]. Then use U1 to accept or reject Y1: If U1 ≤ Λ(ξY1)

then accept, otherwise reject. In case of rejection, use U2 to accept or reject Y2: If U2 ≤ Λ(ξY1+Y2)

then accept, otherwise reject, etc. If Yq, q ≥ 1, is the first sample that is accepted, then due to

Proposition 4.2, we find that τ =
∑q

n=1 Yn and due to Proposition 4.1, we find that z = Uq.

The above reasoning can be extended to cases where the mark space can be written as Z =

Z1×Z, where Z1 is bounded, e.g., Z1 = [0, C], and where the intensity measure is E{pP (dt, dz)} =

dt · dz1 · µ(dz). Here, z1 is the first component of a mark z ∈ Z, z collects the other components,

and µ is a probability measure. Using µ(Z) = 1 we find again that E{pP ((0, t],Z)} = t ·C and that

the arrivals of τn are Poisson with intensity C. The generation of points from pP (dt, (0,Λ(ξt)]×Z)

is similar as above, except that sequences of triples (Yi, Ui, Zi) are generated where Yi ∼ Exp(C),

4.3 Stochastically and dynamically coloured Petri nets 77

Ui ∼ U [0, C] and Z i ∼ µ. As long as Ui > Λ(ξΣi
n=1Yn

), reject the triple. As soon as Uq ≤
Λ(ξΣq

n=1Yn
) then the Poisson random measure has generated a point ({τ}, {z1}, {z}), with τ =

∑q

n=1 Yn, z1 = Uq, and z = Zq.

4.3 Stochastically and dynamically coloured Petri nets

This section presents a definition of stochastically and dynamically coloured Petri net (SD-

CPN).

Definition 4.1 (Stochastically and dynamically coloured Petri net). An SDCPN is a collection of

elements (P , T , A, N , S, C, I, V , W , G, D, F), together with an SDCPN execution prescription

which makes use of a sequence {Ui; i = 0, 1, . . .} of independent uniform U [0, 1] random variables,

of independent sequences of mutually independent standard Brownian motions {Bi,P
t ; i = 1, 2, . . .}

of appropriate dimensions, one sequence for each place P , and of five rules R0–R4 that solve

enabling conflicts.

The execution of an SDCPN defines a sample path of a stochastic process which is a random

hybrid vector formed by the collection of colours of all tokens, and by the places in which they

reside. This is similar as for DCPN. The main difference with DCPN is that the token colour

functions are no longer defined by ordinary differential equations, but by stochastic differential

equations.

The formal SDCPN definition provided below is organised as follows:

• Section 4.3.1 defines the SDCPN elements (P , T , A, N , S, C, I, V , W , G, D, F).

• Section 4.3.2 explains the SDCPN execution.

• Section 4.3.3 explains how the SDCPN execution defines a unique stochastic process.

4.3.1 SDCPN elements

The SDCPN elements (P , T , A, N , S, C, I, V , W , G, D, F) are defined as follows:

• P , T , A, N , S, C, I, V , G, D, and F are as for DCPN, see Section 3.3.1.

• W = {WP ;P ∈ P, C(P) 6= R0} is a set of token colour matrix functions. For each place

P ∈ P for which C(P) 6= R0, it contains a measurable mapping WP : C(P) → Rn(P)×h(P)

that defines the diffusion coefficient of a stochastic differential equation for the colour of a

token in place P , where h : P → N, and n : P → N is such that C(P) = Rn(P). It is

78 Stochastically and dynamically coloured Petri nets

assumed that WP and VP satisfy conditions that ensure a probabilistically unique solution of

each stochastic differential equation.1

For the places, transitions and arcs, the graphical notation is as for DCPN, see Figure 3.1.

4.3.2 SDCPN execution

The execution of an SDCPN is similar to the execution of a DCPN, following a prescription

of the initiation, the token colour evolution, the transition enabling, and the transition firing. The

execution makes use of a sequence {Ui; i = 0, 1, . . .} of independent uniform random variables

on [0, 1] and it provides a series of increasing stopping times, τ0 < τ1 < τ2 < · · · , with for

t ∈ (τi, τi+1) a fixed number of tokens per place and per token a colour which is the solution of a

differential equation. The main difference with DCPN execution is that this differential equation is

now a stochastic rather than an ordinary one, by inclusion of a diffusion term. For this, it makes use

of independent sequences of mutually independent standard Brownian motions {Bi,P
t ; i = 1, 2, . . .}

of appropriate dimensions, one sequence for each place P .

Initiation The initiation of SDCPN is equal to the initiation of DCPN: The probability measure

I characterises an initial marking at time τ0 = 0.

Token colour evolution The process of token colour evolution between transition firings in

SDCPN is different from the evolution in DCPN: For each token in each place P for which

C(P) 6= R0: if the colour of this token is equal to CP
τ at time t = τ , and if this token is

still in this place at time t > τ , then the colour CP
t of this token equals the probabilistically

unique solution of the stochastic differential equation dCP
t = VP (CP

t)dt + WP (C
P
t)dB

i,P
t with

initial condition CP
τ , and with {Bi,P

t } an h(P)-dimensional standard Brownian motion. This gives

CP
t = CP

τ +
∫ t
τ
VP (CP

s)ds +
∫ t
τ
WP (C

P
s)dB

i,P
s . The first token, if any, in place P uses Brownian

motion {B1,P
t }; the second token, if any, uses Brownian motion {B2,P

t }, etc. Each token in a place

for which C(P) = R0 remains without colour.

Transition enabling, and Transition firing Pre-enabling, enabling and firing of SDCPN

transitions is according to the same procedures and rules as for DCPN, including rules R0–R4. In

order to keep track of the identity of individual tokens, the tokens in a place are ordered, according

to the same rules as for DCPN.

1Note that in earlier SDCPN definitions, e.g., [EB06], it was assumed that VP and WP satisfy local Lipschitz

condition. This condition has now been relaxed to probabilistic uniqueness of solution of the related stochastic

differential equation(s).

4.4 Hybrid stochastic differential equations 79

4.3.3 SDCPN stochastic process

The SDCPN stochastic process is defined in the same way as the DCPN stochastic process: The

marking of the SDCPN is given by the numbers of tokens in the places and the associated colour

values of these tokens. Due to the uniquely defined order of the tokens, the marking is unique

except possibly when one or more transitions fire (particularly, immediate transitions fire without

delay hence a sequence of immediate transitions firing will generate a sequence of markings at the

same time instant). The SDCPN marking at each time instant can be mapped to a probabilistically

unique SDCPN stochastic process {Mt, Ct}, as follows:

For any t ≥ τk−1, k = 1, 2, . . ., let a token distribution be characterised by the vector M ′
t =

(M ′
1,t, . . . ,M

′
|P|,t), whereM ′

i,t ∈ N denotes the number of tokens in place Pi at time t and 1, . . . , |P|
refers to a unique ordering of places adopted for SDCPN. At times t ∈ (τk−1, τk) when no transition

fires, the token distribution is unique and the SDCPN discrete process stateMt is defined to be equal

to M ′
t . The associated colours of these tokens are uniquely gathered in a column vector Ct which

first contains all colours of tokens in place P1, next (i.e., below it) all colours of tokens in place

P2, etc, until place P|P|, where 1, . . . , |P| refers to a unique ordering of places adopted for SDCPN.

Within a place the colours of the tokens are ordered according to the unique ordering of tokens

within their place defined for SDCPN (see under SDCPN execution above).

If at time t = τk (k ≥ 0) one or more transitions fire, then the set of applicable token

distributions is collected in M̃τk = {M ′
τk

| M ′
τk

is a token distribution at time τk}, and the SDCPN

discrete process state at time τk is uniquely defined byMτk = {M ′
τk

|M ′
τk

∈ M̃τk and no transitions

are enabled in M ′
τk
}; in words, Mτk is the token distribution that occurs after all transitions that fire

at time τk have been fired. The associated colours of these tokens are gathered in a column vector

Cτk in the same way as described above. This construction ensures that the process {Mt, Ct} has

limits from the left and is continuous from the right, i.e., it satisfies the càdlàg property. If at a time

t when one or more transitions fire, the process {Mt} jumps to the same value again, and only Ct

makes a jump, then the càdlàg property for {Ct} (hence for {Mt, Ct}) is still maintained due to the

timing construction of {Mt} above and the direct coupling of {Ct} with {Mt}.

4.4 Hybrid stochastic differential equations

This section presents, following [Blo03] and [BBEP03], a definition of hybrid stochastic

differential equation (HSDE) on a hybrid state space and gives conditions under which the HSDE

has a pathwise unique solution. This pathwise unique solution is referred to as HSDE solution

process or general stochastic hybrid process (GSHP).

We work with a complete stochastic basis (Ω,ℑ, {ℑt},P,T), in which a complete probability

space (Ω,ℑ,P) is equipped with a right-continuous filtration {ℑt} on the positive time line

80 Stochastically and dynamically coloured Petri nets

T = R+. This stochastic basis is endowed with a probability measure µθ0,X0 for the initial state,

an independent h-dimensional standard Wiener process {Wt} and an independent homogeneous

Poisson random measure pP (dt, dz) on T× Rq+1.

Definition 4.2 (Hybrid stochastic differential equation). A HSDE on stochastic basis (Ω,ℑ, {ℑt},P,
T), is defined as a set of equations (4.4.1)-(4.4.8) in which a collection of elements (M, E, f , g,

µθ0,X0 , Λ, ψ, ρ, µ, pP , {Wt}) appear.

This section is organised as follows:

• Section 4.4.1 explains the elements and the equations that define HSDE on a hybrid state

space.

• Section 4.4.2 shows, following [Blo03] and [BBEP03], that under a number of HSDE

conditions H1–H8, the HSDE has a pathwise unique solution which is a semi-martingale.

4.4.1 HSDE elements and equations

This section presents the elements and equations that define an HSDE on a hybrid state space.

The elements (M, E, f , g, µθ0,X0 , Λ, ψ, ρ, µ, pP , {Wt}) are defined as follows:

• M = {ϑ1, . . . , ϑN} is a finite set, N ∈ N, 1 ≤ N <∞.

• E = {{θ} × Eθ; θ ∈ M} is the hybrid state space, where for each θ ∈ M, Eθ is an open

subset of Rn with boundary ∂Eθ. The boundary of E is given by ∂E = {{θ}×∂Eθ; θ ∈ M}.

• f : M× Rn → Rn is a measurable mapping.

• g : M× Rn → Rn×h is a measurable mapping.

• µθ0,X0 : Ω × B(E) → [0, 1] is a probability measure for the initial random variables θ0, X0,

which are defined on the stochastic basis; µθ0,X0 is assumed to be invertible (i.e., its quantile

function is assumed to exist).

• Λ : M× Rn → [0,∞) is a measurable mapping.

• ψ : M×M× Rn × Rq → Rn is a measurable mapping such that x+ ψ(ϑ, θ, x, z) ∈ Eϑ for

all x ∈ Eθ, z ∈ Rq, and ϑ, θ ∈ M.

• ρ : M ×M × Rn → [0,∞) is a measurable mapping such that
∑N

i=1 ρ(ϑi, θ, x) = 1 for all

θ ∈ M, x ∈ Rn.

• µ : Ω× Rq → [0, 1] is a probability measure which is assumed to be invertible.

4.4 Hybrid stochastic differential equations 81

• pP : Ω × T × Rq+1 → {0, 1} is a homogeneous Poisson random measure on the stochastic

basis, independent of (θ0, X0). The intensity measure of pP (dt, dz) equals dt·µL(dz1)·µ(dz),
where z = Col{z1, z} and µL is the Lebesgue measure.

• W : Ω × T → Rh such that {Wt} is an h-dimensional standard Wiener process on the

stochastic basis, and independent of (θ0, X0) and pP .

Using these elements, the HSDE process {θ∗t , X∗
t } is defined as follows:

θ∗t = θkt for all t ∈ [τ bk , τ
b
k+1), k = 0, 1, 2, . . . (4.4.1)

X∗
t = Xk

t for all t ∈ [τ bk , τ
b
k+1), k = 0, 1, 2, . . . (4.4.2)

Hence {θ∗t , X∗
t } consists of a concatenation of processes {θkt , Xk

t } which are defined by (4.4.3)-

(4.4.8) below. If the system (4.4.1)-(4.4.8) has a solution in probabilistic sense, then the process

{θ∗t , X∗
t } is referred to as HSDE solution process or GSHP.

dθkt =

N∑

i=1

(ϑi − θkt−)pP (dt, (Σi−1(θ
k
t−, X

k
t−),Σi(θ

k
t−, X

k
t−)]× Rq) (4.4.3)

dXk
t = f(θkt , X

k
t)dt+g(θ

k
t , X

k
t)dWt+

∫

Rq

ψ(θkt , θ
k
t−, X

k
t−, z)pP (dt, (0,Λ(θ

k
t−, X

k
t−)]×dz) (4.4.4)

with θ00 = θ0, X0
0 = X0 and with Σ0 through ΣN measurable mappings satisfying, for θ ∈ M,

ϑj ∈ M, x ∈ Rn:

Σi(θ, x) =

{
Λ(θ, x)

∑i

j=1 ρ(ϑj , θ, x) if i > 0

0 if i = 0
(4.4.5)

In addition, for k = 0, 1, 2, . . ., with τ b0 = 0:

τ bk+1 , inf{t > τ bk | (θkt , Xk
t) ∈ ∂E} (4.4.6)

P{θk+1
τb
k+1

= ϑ,Xk+1
τb
k+1

∈ A | θk
τb
k+1−

= θ,Xk
τb
k+1−

= x} = Q({ϑ} × A; θ, x) (4.4.7)

for A ∈ B(Rn), where Q is given by

Q({ϑ} × A; θ, x) = ρ(ϑ, θ, x)

∫

Rq

1{(x+ψ(ϑ,θ,x,z))∈A}µ(dz) (4.4.8)

4.4.2 HSDE solution

This subsection shows that under a set of sufficient conditions H1-H8, the HSDE (4.4.1)-(4.4.8)

has a pathwise unique solution. Note that the existence of a pathwise unique solution guarantees

82 Stochastically and dynamically coloured Petri nets

the existence of a unique solution in probabilistic sense.

Proposition 4.3. Let conditions H1-H8 below hold true. Let (θ∗0(ω), X
∗
0(ω)) = (θ0, X0) ∈ E for

all ω. Then for every initial condition (θ0, X0), Equations (4.4.1)-(4.4.8) have a pathwise unique

solution {θ∗t , X∗
t } which is càdlàg and adapted and is a semi-martingale assuming values in the

hybrid state space E.

H1 For all θ ∈ M there exists a constant K(θ) such that for all x ∈ Rn, |f(θ, x)|2 + ‖g(θ, x))‖2 ≤
K(θ)(1 + |x|2), where |a|2 = ∑

i(ai)
2 and ||b||2 = ∑

i,j(bij)
2.

H2 For all r ∈ N and for all θ ∈ M there exists a constant Lr(θ) such that for all x and y in the

ball {z ∈ Rn | |z| ≤ r + 1}, |f(θ, x)− f(θ, y)|2 + ‖g(θ, x)− g(θ, y)‖2 ≤ Lr(θ)|x− y|2.

H3 For each θ ∈ M, the mapping Λ(θ, ·) : Rn → [0,∞) is continuous and bounded, with upper

bound a constant RΛ.

H4 For all (θ, ϑ) ∈ M2, the mapping ρ(ϑ, θ, ·) : Rn → [0,∞) is continuous.

H5 For all r ∈ N there exists a constant Mr(θ) such that

sup
|x|≤r

∫

Rq

|ψ(ϑ, θ, x, z)|µ(dz) ≤Mr(θ), for all ϑ, θ ∈ M

H6 |ψ(θ, θ, x, z)| = 0 or > 1 for all θ ∈ M, x ∈ Rn, z ∈ Rq.

H7 {(θ∗t , X∗
t)} hits the boundary ∂E a finite number of times on any finite time interval.

H8 |ϑi−ϑj | > 1 for i 6= j and ϑi, ϑj ∈ M, with | · | a suitable metric well defined on M. We could

for example take for ϑi the ith unit vector of length N ; this yields |ϑi − ϑj | =
√
2 > 1 for

i 6= j and |ϑi| = 1 for all i.

Proof. [Blo03] has used [LM76] to prove a version of Proposition 4.3 whereE = M×Rn, i.e., there

are no boundaries with instantaneous jumps (forced jumps). Subsequently, [BBEP03] have proven

the proposition under H1-H8 and the additional condition that {τ bk} is a sequence of predictable

stopping times. [KB05a, Kry06] have shown that this additional condition can be removed. The

complete proof of Proposition 4.3 is provided in [BE09].

4.5 Hybrid stochastic differential equations into stochastically

and dynamically coloured Petri nets

This section shows that under a few conditions, each hybrid stochastic differential equation

can be represented by a stochastically and dynamically coloured Petri net, in such a way that the

4.5 Hybrid stochastic differential equations into stochastically and dynamically coloured Petri nets 83

HSDE-process and the SDCPN-process are probabilistically equivalent.

Theorem 4.4 (HSDE into SDCPN). Consider an arbitrary HSDE (4.4.1)-(4.4.8) with elements

(M, E, f , g, µθ0,X0 , Λ, ψ, ρ, µ, pP , {Wt}). If for each θ the stochastic differential equation

dXt = f(θ,Xt)dt+ g(θ,Xt)dWt has a unique solution in probabilistic sense and if Λ is bounded,

then the elements of this HSDE can be mapped into an SDCPN (P , T , A, N , S, C, I, V , W , G,

D, F) satisfying R0–R4. If the resulting SDCPN is executed on a probability space endowed with

sequences of standard Brownian motions (one sequence for each place) then the resulting SDCPN

process and the HSDE solution process are probabilistically equivalent.

Proof. Consider an arbitrary HSDE (4.4.1)-(4.4.8) with elements (M, E, f , g, θ0, X0, Λ, ψ, ρ, µ,

pP , {Wt}. Next, we prove Theorem 4.4 by the following steps:

• (Construction of SDCPN elements.) First, we assume that the stochastic differential

equations defined by f and g have probabilistically unique solutions and that Λ is bounded.

We characterise SDCPN elements (P , T , A, N , S, C, I, V , W , G, D, F) in terms of HSDE

elements (M, E, f , g, θ0, X0, Λ, ψ, ρ, µ, pP , {Wt}). The thus constructed SDCPN is referred

to as SDCPNHSDE.

• (Probabilistic equivalence.) The execution of the SDCPNHSDE elements provides the

SDCPNHSDE stochastic process. We verify that SDCPN rules R0–R4 hold true for the

SDCPNHSDE. Finally, we show that the SDCPNHSDE stochastic process is probabilistically

equivalent to the stochastic process defined by the original HSDE (4.4.1)-(4.4.8).

Notice that Theorem 4.4 does not assume that HSDE conditions H1-H8 are necessarily satisfied.

4.5.1 Construction of SDCPNHSDE elements

We assume that for each θ the stochastic differential equation dXt = f(θ,Xt)dt+ g(θ,Xt)dWt

has a unique solution in probabilistic sense and that Λ is bounded. We provide an into-mapping that

characterises SDCPN elements (P , T , A, N , S, C, I, V , W , G, D, F) in terms of HSDE elements

(M, E, f , g, θ0, X0, Λ, ψ, ρ, µ, pP , {Wt}).

P = {Pθ; θ ∈ M}. Hence, for each θ ∈ M, there is one place Pθ. The places are ordered

Pϑ1, . . . , PϑN according to M = {ϑ1, . . . , ϑN}. Since M is finite, P is finite as well, which

satisfies SDCPN definitions.

T = TG ∪TD ∪TI , with TI = ∅, TG = {TGθ ; θ ∈ M}, TD = {TDθ ; θ ∈ M}. Hence, for each θ ∈ M

there is one guard transition TGθ and one delay transition TDθ .

84 Stochastically and dynamically coloured Petri nets

A = AO ∪ AE ∪ AI , with |AI | = 0, |AE| = 0, and |AO| = 2N + 2N2, where N = |M|. Hence,

there are no inhibitor arcs or enabling arcs in this SDCPNHSDE constructed, and the number

of ordinary arcs is 2N + 2N2.

N : The node function maps each arc in A = AO to a pair of nodes. These connected pairs of nodes

are: {(Pθ, TGθ); θ ∈ M}∪{(Pθ, TDθ); θ ∈ M}∪{(TGθ , Pϑ); θ, ϑ ∈ M}∪{(TDθ , Pϑ); θ, ϑ ∈ M}.

Hence, each place Pθ (θ ∈ M) has two outgoing arcs: one to guard transition TGθ and one to

delay transition TDθ . Each transition has N outgoing arcs: one arc to each place in P .

S = {Rn}.

C: For all θ ∈ M, C(Pθ) = Rn

I: For all θ0 ∈ M and X0 ∈ C(Pθ0), I(Mθ0 , X0) = µθ0,X0(θ0, X0), where Mθ is the |P|-
dimensional vector that has a one at the element corresponding to place Pθ and zeros

elsewhere. Hence, with probability µθ0,X0(θ0, X0), place Pθ0 initially gets one token with

colour X0 while all other places initially get zero tokens.

V: For all θ ∈ M, VPθ
(·) = f(θ, ·).

W: For all θ ∈ M, WPθ
(·) = g(θ, ·). Since it was assumed that for each θ the stochastic differential

equation dXt = f(θ,Xt)dt + g(θ,Xt)dWt has a unique solution in probabilistic sense, we

find that the same holds true for dCt = VPθ
(Ct)dt+WPθ

(Ct)dB
i,Pθ

t , which satisfies SDCPN

definitions.

G: For all θ ∈ M, GTG
θ
= Eθ.

D: For all θ ∈ M, DTD
θ
(·) = Λ(θ, ·). Since we assumed that Λ is bounded, say Λ(θ, ·) ≤ RΛ,

we find that DTD
θ
(·) is bounded as well, and its upperbound is RD = RΛ. This boundedness

implies local integrability, which satisfies SDCPN definitions.

F : For all T ∈ T , define eϑ
′

T as the vector of length N containing a one at the component

corresponding with the arc from transition T to place Pϑ′ and zeros elsewhere. Then for

all θ ∈ M, and for T ∈ {TGθ , TDθ }, FT (e
ϑ′

T , x
′; x) = FQ

T (ϑ
′, x′; θ, x), for all x ∈ Eθ ∪ ∂Eθ,

ϑ′ ∈ M and x′ ∈ Eϑ′ , where FQ
T is defined through

FQ
T ({ϑ′} × A′; θ, x) = ρ(ϑ′, θ, x)

∫

Rq

1{(x+ψ(ϑ′,θ,x,z))∈A′}µ(dz) (4.5.9)

4.5 Hybrid stochastic differential equations into stochastically and dynamically coloured Petri nets 85

4.5.2 Probabilistic equivalence

The execution of the SDCPNHSDE elements on a probability space endowed with sequences of

standard Brownian motions {Bi,P
t ; i = 1, 2, . . .} provides a SDCPNHSDE stochastic process. This

execution makes use of an independent sequence {Ui; i = 0, 1, . . .} of independent uniform U [0, 1]

random variables and the rules R0–R4.

We show that the SDCPNHSDE stochastic process is probabilistically equivalent to the stochastic

process defined by the original HSDE. This is done by showing:

• Equivalence of initial states

• Equivalence of continuous evolution until first jump

• Equivalence of time of jumps

• Equivalence of size of jumps

• Equivalence of processes after the first jump

Equivalence of initial states The initial marking of the SDCPNHSDE is defined by I(Mθ0 , X0) =

µθ0,X0(θ0, X0), where Mθ is the N-dimensional vector that has a one at the element corresponding

to place Pθ and zeros elsewhere. Therefore, with probability I(Mθ0 , X0), at time t = τ0 there is one

token in place Pθ0 which has colour X0. The initial state of the HSDE is (θ0, X0) with probability

µθ0,X0(θ0, X0). Due to the mapping between the places Pθ ∈ P and the modes θ ∈ M, the initial

states of SDCPNHSDE and HSDE are probabilistically equivalent.

Equivalence of continuous evolution until first jump The continuous part of the SDCPNHSDE

stochastic process equals the vector that collects all token colours. Since there is only one token

in the constructed SDCPNHSDE at all times, this vector equals the colour of this single token. Until

the first jump, this colour follows the stochastic differential equation dC
Pθ0
t = VPθ0

(C
Pθ0
t)dt +

WPθ0
(C

Pθ0
t)dB

i,Pθ0
t which has probabilistically unique solution C

Pθ0
t .

In the original HSDE solution process, the continuous process until the first jump follows

stochastic differential equation dX0
t = f(θ0t , X

0
t)dt + g(θ0t , X

0
t)dWt +

∫
Rq ψ(θ

0
t , θ

0
t−, X

0
t−, z)

pP (dt, (0,Λ(θ
0
t−, X

0
t−)]×dz) where dθ0t =

∑N

i=0(ϑi−θ0t−)pP (dt, (Σi−1(θ
0
t−, X

0
t−), Σi(θ

0
t−, X

0
t−)]×

Rq). Until the first jump, the Poisson terms in the stochastic differential equations above are equal

to zero. What remains is: dθ0t = 0 and dX0
t = f(θ0t , X

0
t)dt+ g(θ0t , X

0
t)dWt, which are assumed to

have a probabilistically unique solution θ0t and X0
t .

Due to equivalence of initial states Mθ0 ≡ θ0 and C0 = X0, equivalence of drift coefficients

VPθ0
(·) = f(θ0, ·), equivalence of diffusion coefficients WPθ0

(·) = g(θ0, ·) and probabilistic

86 Stochastically and dynamically coloured Petri nets

equivalence of {Bi,P
t } and {Wt}, as long as no jumps occur, we derive that for t ≥ τ0 = 0,

Mθ0 = θ0t and X0
t = C

Pθ0
t in probabilistic sense.

Equivalence of time of jumps For the SDCPNHSDE, for each arbitrary place in which the initial

token may reside, two transitions are pre-enabled: a guard transition and a delay transition. If either

of them becomes enabled and fires, then the other becomes disabled. The time until the guard

transition is enabled is tG∗ (M
θ0 , C0) , inf{t − τ0 > 0 | CPθ0

t ∈ ∂GTG
θ0
}. The time until the delay

transition is enabled is σ
TD
θ0

1 = Dqf

TD
θ0

(U1), with Dqf

TD
θ0

(u) = inf{t− τ0 | exp(−
∫ t
τ0
DTD

θ0
(C

Pθ0
s)ds) ≤

u} and U1 ∼ U [0, 1].

The verification if SDCPN rules R0–R4 hold true in the construction above is according to

the same reasoning as for DCPNPDP, see Section 3.5.2: Since there are no immediate transitions

in the constructed SDCPNHSDE instantiation, rule R0 holds true. Since there is only one token

in the constructed SDCPNHSDE instantiation, R1–R3 also hold true. Rule R4 is in effect when

for particular θ, transitions TGθ and TDθ become enabled at exactly the same time. Since DTD
θ

is

integrable, the probability that this occurs is zero, yielding that R4 holds with probability one.

However, if this event should occur, then due to FTG
θ

= FTD
θ

, the application of rule R4 has no

effect on the path of the SDCPNHSDE stochastic process.

For HSDE, from Equation (4.4.6), using k = 0 and τ b0 = τ0, the time at which the continuous

state first hits the boundary of its state space is τ b1 , inf{t > τ0 | (θ0t , X0
t) ∈ {{θ}×∂Eθ ; θ ∈ M}}.

It is easily seen that as long as θ0t = θ0, then due to X0
t = C

Pθ0
t and the equality ∂GTG

θ0
= ∂Eθ0 ,

we have that inf{t > τ0 | (θ0t , X
0
t) ∈ {{θ} × ∂Eθ; θ ∈ M}} = τ0 + inf{t − τ0 > 0 |

C
Pθ0
t ∈ ∂GTG

θ0
}, hence τ b1 = τ0 + tG∗ (M

θ0 , C0). However, there is a possibility that at some

time τ p1 < τ b1 , the HSDE solution process state makes a jump due to the Poisson random

measure generating a point: Consider Equations (4.4.3) and (4.4.4), for k = 0. A jump

is generated when
∑N

i=1(ϑi − θ0t−)pP (dt, (Σi−1(θ
0
t−, X

0
t−),Σi(θ

0
t−, X

0
t−)] × Rq) 6= 0 or when∫

Rq ψ(θ
0
t , θ

0
t−, X

0
t−, z)pP (dt, (0,Λ(θ

0
t−, X

0
t−)] × dz) 6= 0, or both. Consider the Poisson random

measure in Equation (4.4.4), i.e., pP (dt, (0,Λ(θ
0
t−, X

0
t−)] × dz), which is equal to zero, except at

singular times when it generates a multivariate point ({τ p1 }, {z1}, {z}). In Section 4.2 it is explained

that due to the Poisson random measure being homogeneous and due to Λ(θ0t−, X
0
t−) ≤ RΛ, the

point ({τ p1 }, {z1}, {z}) is generated as follows: Generate a triple (ε1, ν1, ν1), with ε1 ∼ Exp(RΛ),

ν1 ∼ U [0, RΛ] and ν1 ∼ µ. Accept this triple if ν1 ≤ Λ(θ0τ0+ε1−, X
0
τ0+ε1−), otherwise reject it.

If it is accepted then τ p1 = τ0 + ε1, z1 = ν1 and z = ν1. If it is not accepted then another triple

(ε2, ν2, ν2) is generated with ε2 ∼ Exp(RΛ), ν2 ∼ U [0, RΛ] and ν2 ∼ µ, and this triple is accepted

if ν2 ≤ Λ(θ0τ0+ε1+ε2−, X
0
τ0+ε1+ε2−). If it is accepted then τ 01 = τ0 + ε1 + ε2, z1 = ν2 and z = ν2. If

it is not accepted then another triple (ε3, ν3, ν3) is generated, and so on. Hence if (εr, νr, νr) is the

first triple that is accepted then τ p1 = τ0 +
∑r

n=1 εn and z1 = νr and z = νr. Due to Proposition 4.2

4.5 Hybrid stochastic differential equations into stochastically and dynamically coloured Petri nets 87

we find that the interarrival times of the triples accepted through this mechanism are exponential

with intensity Λ. In addition, due to DTD
θ
(·) = Λ(θ, ·), we find that τ p1 − τ0 is probabilistically

equivalent to σ
TD
θ0

1 .

For HSDE, the time of the first jump is equal to the minimum of τ b1 and τ p1 . Due to the

reasoning above, this time of first jump is probabilistically equivalent to the time of first jump

of the SDCPNHSDE.

Equivalence of size of jumps For the SDCPNHSDE, the jump size is determined by the firing

measure FT of the enabled transition T : for all θ ∈ M and T ∈ {TGθ , TDθ }, FT (e
ϑ′

T , x
′; x) =

FQ
T (ϑ

′, x′; θ, x), for all x ∈ Eθ ∪ ∂Eθ, ϑ′ ∈ M and x′ ∈ Eϑ′ , where FQ
T is defined through

FQ
T ({ϑ′} ×A′; θ, x) = ρ(ϑ′, θ, x)

∫

Rq

1{(x+ψ(ϑ′,θ,x,z))∈A′}µ(dz)

For HSDE, the size of jumps is generated as follows: In case of a jump generated by Poisson

random measure at time t = τ p1 , the size of jump in {θ0t } is given by

θ0τp1
− θ0τp1−

=
N∑

i=1

(ϑi − θ0τp1−
)pP (dt, (Σi−1(θ

0
τ
p
1 −
, X0

τ
p
1−

),Σi(θ
0
τ
p
1−
, X0

τ
p
1−

)]× Rq)

and the size of jump in {X0
t } is given by

X0
τ
p
1
−X0

τ
p
1−

=

∫

Rq

ψ(θ0τp1
, θ0τp1−

, X0
τ
p
1−
, z)pP (dt, (0,Λ(θ

0
τ
p
1−
, X0

τ
p
1−

)]× dz)

Now use that the Poisson random measure has generated a point ({τ p1 }, {z1}, {z}), with z1 = νr

and z = νr as described above. Random variable z1 is used as follows: Notice that by Equation

(4.4.5) and definition of ρ, for all θ ∈ M and all x ∈ Rn, the interval (0,Λ(θ, x)] is divided into

subintervals (Σi−1(θ, x),Σi(θ, x)], i.e., (0,Λ(θ, x)] = (Σ0(θ, x),Σ1(θ, x)] ∪ (Σ1(θ, x),Σ2(θ, x)] ∪
· · · ∪ (ΣN−1(θ, x),ΣN(θ, x)], where Σ0(θ, x) = 0 and ΣN (θ, x) = Λ(θ, x). The ith interval,

i.e., (Σi−1(θ, x),Σi(θ, x)] has a weight ρ(ϑi, θ, x) = (Σi(θ, x) − Σi−1(θ, x))/Λ(θ, x), with∑N

i=1 ρ(ϑi, θ, x) = 1. Due to z1 ∈ (0,Λ(θ0
τ
p
1−
, X0

τ
p
1−

)], there exists j ∈ {1, . . . , N} such that

z1 ∈ (Σj−1(θ
0
τ
p
1 −
, X0

τ
p
1−

),Σj(θ
0
τ
p
1
, X0

τ
p
1
)]. This makes pP (dt, (Σi−1(θ

0
τ
p
1 −
, X0

τ
p
1−

),Σi(θ
0
τ
p
1−
, X0

τ
p
1−

)]

×Rq) = 1 if i = j and = 0 for i 6= j. Therefore, θ0
τ
p
1
− θ0

τ
p
1−

= ϑj − θ0
τ
p
1−

, i.e., at time

τ p1 , θt jumps from θ0
τ
p
1−

= θ0 to θ0
τ
p
1

= ϑj . Next, the random variable z is used to determine

X0
τ
p
1
− X0

τ
p
1−

, i.e., in ({τ p1 }, {z1}, {z}), pP (dt, (0,Λ(θ0t−, X0
t−)] × dz) = 1 and is zero elsewhere.

Therefore, X0
τ
p
1
− X0

τ
p
1−

= ψ(ϑj , θ
0
τ
p
1−
, X0

τ
p
1−
, z). This gives that at time τ p1 , X0

t jumps from

X0
τ
p
1−

to X0
τ
p
1−

+ ψ(ϑj , θ
0
τ
p
1−
, X0

τ
p
1−
, z). From this, we find that the probability for (θ0t , X

0
t) to

jump into ({ϑj}, A) (= {ϑj} × A), given that the state right before the jump is (θ0
τ
p
1 −
, X0

τ
p
1−

), is

88 Stochastically and dynamically coloured Petri nets

equal to the probability that z1 is in (Σj−1(θ
0
τ
p
1−
, X0

τ
p
1−

),Σj(θ
0
τ
p
1−
, X0

τ
p
1−

)], times the probability that

X0
τ
p
1−

+ ψ(ϑj , θ
0
τ
p
1−
, X0

τ
p
1−
, z) is in A. This probability is equal to

ρ(ϑj , θ
0
τ
p
1 −
, X0

τ
p
1−

)

∫

Rq

1{(X0
τ
p
1−

+ψ(ϑj ,θ0
τ
p
1−

,X0
τ
p
1−

,z))∈A}µ(dz)

which is equal to Q({ϑj} × A; θ0
τ
p
1−
, X0

τ
p
1−

), according to Equation (4.4.8).

For boundary hitting type of jumps, the size of jump is given by Equation (4.4.7), i.e.,

P{θ1
τb1

= ϑ,X1
τb1

∈ A | θ0
τb1−

= θ,X0
τb1−

= x} = Q({ϑ} ×A; θ, x)

This shows that the jump size mechanisms for Poisson random measure type of jumps and boundary

hitting type of jumps are the same. Also note that for all ϑ′, x′, θ and x, and T ∈ TD ∪ TG,

FQ
T (ϑ

′, x′; θ, x) = Q(ϑ′, x′; θ, x). This means that the SDCPNHSDE state after the jump and the

HSDE solution process state after the jump are probabilistically equivalent.

Equivalence of processes after the first jump From τ1 = min{τ b1 , τ p1} onwards, the probabilistic

equivalence of the HSDE and SDCPNHSDE processes is shown in the same way. If τ1 = τ p1 , then

Equations (4.4.3) and (4.4.4) are used for k = 0; if τ1 = τ b1 then these equations are used for k = 1.

From stopping time τn−1 to stopping time τn the HSDE-process and the associated SDCPNHSDE

process have probabilistically equivalent paths and probabilistically equivalent stopping times. Due

to the unique definition of the SDCPNHSDE stochastic process at times when transitions fire, the

SDCPNHSDE state at stopping times is also equivalent to the HSDE-process state at the stopping

times and both processes are càdlàg.

This completes the proof of Theorem 4.4.

4.6 Stochastically and dynamically coloured Petri nets into

hybrid stochastic differential equations

This section shows that under a few conditions, any stochastically and dynamically coloured

Petri net can be represented by a hybrid stochastic differential equation, in such a way that the

SDCPN-process and the HSDE-process are probabilistically equivalent.

Theorem 4.5 (SDCPN into HSDE). Consider an arbitrary SDCPN (P , T , A, N , S, C, I, V ,

W , G, D, F) satisfying R0–R4. If the initial marking does not enable a transition, if none of the

transition firings enable a guard transition, if the delay rates DT are bounded, and if the number

of tokens remains finite for t → ∞, then this SDCPN can be mapped into an HSDE (4.4.1)-(4.4.8)

with elements (M, E, f , g, µθ0,X0 , Λ, ψ, ρ, µ, pP , {Wt}), provided µ is given. If the original

4.6 Stochastically and dynamically coloured Petri nets into hybrid stochastic differential equations 89

SDCPN is executed on a probability space which is endowed with sequences of standard Brownian

motions (one sequence for each place), then the resulting HSDE solution process and the SDCPN

process are probabilistically equivalent. If in addition, conditions S1-S6 below are satisfied, then

conditions H1-H8 are satisfied for the resulting HSDE.

S1 For all r ∈ N and for all P ∈ P , there exist Kv
P , Lvr,P , Kw

P and Lwr,P such that for all c ∈ C(P)
and any a, b in the ball {z ∈ C(P) | |z| ≤ r + 1},

• |VP (c)|2 ≤ Kv
P (1 + |c|2)

• |VP (b)− VP (a)|2 ≤ Lvr,P |b− a|2

• ‖WP (c)‖2 ≤ Kw
P (1 + |c|2)

• ‖WP (b)−WP (a)‖2 ≤ Lwr,P |b− a|2.

S2 If (Mt, Ct) denotes the SDCPN marking at time t and τ denotes a time at which one or more

transitions fire, then there exists RS(Mt) <∞ such that |Cτ −Cτ−| = 0 or ∈ (1, RS(Mτ−)].

Here, Ct denotes a vector Ct with a sufficient number of zeros added so that Cτ and Cτ−

have the same number of vector elements.

S3 For all T ∈ TD, DT is continuous.

S4 In a finite time interval, each guard transition is expected to fire a finite number of times.

S5 For all T ∈ T , c ∈ C(P (Ain,OE(T))) and e ∈ {0, 1}|Aout(T)|, FT (e, ·; c) is continuous.

S6 If M = {Mt | (Mt, Ct) is a reachable marking, t ≥ 0} is the set of reachable token

distributions, then for all M i,M j ∈ M, M i 6=M j , |M i −M j | > 1.

Proof. Consider an arbitrary SDCPN (P , T , A, N , S, C, I, V , W , G, D, F) that satisfies rules

R0–R4. Next we prove Theorem 4.5 by the following steps:

• (Construction of HSDE elements.) It is assumed that the initial marking does not enable a

transition, that none of the transition firings enable a guard transition, that the delay rates are

bounded, and that the number of tokens remains finite for t→ ∞. We characterise the HSDE

elements (M, E, f , g, θ0, X0, Λ, ψ, ρ, µ, pP , {Wt}) in terms of SDCPN elements, provided

µ is given. The thus constructed HSDE is referred to as HSDESDCPN.

• (Probabilistic equivalence.) The solution of the HSDESDCPN (4.4.1)-(4.4.8) provides the

HSDESDCPN-process, i.e., the GSHP. We show that the HSDESDCPN stochastic process is

probabilistically equivalent to the stochastic process defined by the original SDCPN.

• (Verification of H1-H8.) Finally, we show that if conditions S1-S6 are satisfied for the original

SDCPN, then HSDE conditions H1-H8 hold true for the constructed HSDESDCPN.

90 Stochastically and dynamically coloured Petri nets

With this mapping, the constructed HSDESDCPN-process discrete state θt will be a vector of

length |P|, which counts the number of tokens in each place at time t. The HSDESDCPN-process

continuous state Xt will be formed by a vector that contains the colours of all tokens in the

SDCPN at time t. This Xt evolves through time according to the combined token colour functions;

the HSDESDCPN-process jumps correspond with SDCPN transitions firing, which may change the

distribution of tokens among places (θt) and the colours of the tokens (Xt).

4.6.1 Construction of HSDESDCPN elements

It is assumed that the initial marking does not enable a transition, that none of the transition

firings enable a guard transition, that the delay rates DT are bounded, and that the number of tokens

remains finite for t → ∞. We provide an into-mapping that characterises HSDESDCPN elements

(M, E, f , g, θ0, X0, Λ, ψ, ρ, µ, pP , {Wt}) in terms of SDCPN elements (P , T , A, N , S, C, I, V ,

W , G, D, F).

The construction is largely similar to the construction of PDPDCPN elements in terms of DCPN

elements (Section 3.6). However, in addition to the diffusion term and the Poisson random measure,

there is one other difference between PDP and HSDE-processes: For PDP, the dimension of the

continuous-valued process {Xt} is a function of the current value of θt, i.e., Xt ∈ Rd(θ) if θt = θ.

For HSDE,Xt ∈ Rn, with n a constant. In the following, we first construct all HSDESDCPN elements

in a similar way as for PDPDCPN, and subsequently, we add a sufficient number of zeros to some

elements in order to create a constant dimension n for {Xt}.

M The characterisation of M in terms of SDCPN elements is by means of the reachability graph

(RG), in the same way as for the characterisation of PDPDCPN elements in terms of DCPN

elements, see Section 3.6. The nodes in the RG are written as row vectors (m1, . . . , m|P|),

where mi is the number of tokens in place Pi. These nodes are sometimes referred to as

‘token distributions’. Arrows between nodes are labelled by transitions, and indicate how the

number of tokens in the places change due to transition firings. Then M is composed of the

non-vanishing nodes, i.e., is composed of those nodes in the reachability graph that do not

enable an immediate transition. Due to the condition that the number of tokens remains finite

for t→ ∞, M is a finite set; N = |M|.

E For each θ ∈ M, corresponding with node m = (m1, . . . , m|P|) in the RG, define d(θ) =
∑|P|

i=1min(Pi), where n(Pi) is defined through C(Pi) = Rn(Pi). If under token distribution θ,

no guard transitions are pre-enabled, then Eθ = Rd(θ). If under token distribution θ, one or

more guard transitions are pre-enabled, then Eθ = Rd(θ) \ ∂Eθ , where ∂Eθ is constructed as

follows:

4.6 Stochastically and dynamically coloured Petri nets into hybrid stochastic differential equations 91

Without loss of generality, suppose that under token distribution θ, the multi-set of pre-

enabled guard transitions is T1, . . . , Tk. This set may contain one transition multiple times, if

such transition evaluates multiple input token vectors in parallel. Suppose {Pi1, . . . , Piri} =

P (Ain,OE(Ti)) are the input places of Ti that are connected to Ti by means of ordinary or

enabling arcs. This set may contain one place multiple times if such place is connected to Ti

by multiple arcs (input arcs of Ti). Define di =
∑ri

j=1 n(Pij), then ∂Eθ = ∂G ′
T1

∪ . . .∪ ∂G ′
Tk

,

where G ′
Ti

= [[GTi × Rd(θ)−di]] ∈ Rd(θ). Here [[·]] denotes a special ordering of all vector

elements: Vector elements are ordered according to the unique ordering of places and to the

unique ordering of tokens within their place defined for SDCPN. Finally,E = {{θ}×Eθ; θ ∈
M}.

f For each θ ∈ M and x ∈ Eθ, f(θ, x) = Col
|P|
i=1

{
Colmi

j=1{VPi
(cij)}

}
, where

x = Col
|P|
i=1

{
Colmi

j=1{cij}
}

and θ corresponds to (m1, . . . , m|P|). Since VP are measurable

mappings, f is measurable.

g: For each θ ∈ M and x ∈ Eθ,

g(θ, x) = Row{Diag
|P|
i=1

{
Diagmi

j=1{WPi
(cij)}

}
, OΣ

|P|
i=1(m

max
i −mi)h(Pi)}, where

• x = Col
|P|
i=1

{
Colmi

j=1{cij}
}

• OΣ
|P|
i=1(m

max
i −mi)h(Pi) is a square matrix of dimension (Σ

|P|
i=1(m

max
i − mi)h(Pi)) ×

(Σ
|P|
i=1(m

max
i − mi)h(Pi)) that contains only zeros. In the g(θ, ·) constructed above

it is put to the right of the block that contains the matrices WPi
.

• mmax
i = maxθ∈M{mi | θ = (m1, . . . , m|P|)} is the maximum number of tokens that

exists in place Pi. This maximum mmax
i exists due to the condition that for t → ∞ the

number of tokens remains finite.

Since WP are measurable mappings, g is measurable.

µθ0,X0: µθ0,X0(M0, C0) = I(M0, C0) for all M0 and C0, where M0 = (M1,0, . . . ,M|P|,0), with

Mi,0 the initial number of tokens in place Pi, with the places ordered according to the unique

ordering adopted for SDCPN, and C0 ∈ Rd(θ0) containing the colours of these tokens. Due to

the condition that no transitions are enabled in the initial marking (which prevents vanishing

token distributions to be current at the initial time), the constructed M0 and C0 are uniquely

defined, and M0 ∈ M and C0 ∈ Eθ0 .

Λ: For each θ ∈ M and x ∈ Eθ, Λ(θ, x) =
∑k

n=1DTn(c
Tn), where T1, . . . , Tk refers to the multi-

set of transitions in TD that, under token distribution θ, are pre-enabled, and cTn are the

respective elements of x that are used to pre-enable these transitions. This set T1, . . . , Tk

may contain one transition multiple times, if multiple input token vectors are evaluated in

92 Stochastically and dynamically coloured Petri nets

parallel. If the set of pre-enabled delay transitions is empty in θ, then Λ(θ, ·) = 0. Since

DT are locally integrable and bounded, Λ is measurable and bounded. The upperbound of Λ

is RΛ = maxθ∈M{k · RD; the number of elements in the multi-set of transitions in TD that,

under token distribution θ, are pre-enabled = k}.

ψ, ρ, µ We make use of the assumption that µ is given. As part of the construction, define a

probability measure PQ(θ
′, A; θ, x), the value of which equals the probability that if a jump

occurs, and if the value of the HSDE-process just prior to the jump is (θ, x), then the

value of the HSDE-process just after the jump is in {θ′} × A. Probability PQ(θ
′, A; θ, x) is

characterised in terms of the SDCPN by the reachability graph (RG), elements D, G and Rules

R0–R4 and the set F . This is done in four steps, precisely following the characterisation

of the PDP transition measure Q in terms of DCPN elements in Appendix 3.9. Next, we

characterise ψ and ρ in terms of the results:

For HSDE, due to Equation (4.4.7), the probability that given a jump from (θ, x), the state

after the jump is in (θ′, A) is given by Q({θ′} × A; θ, x) hence we find that PQ = Q. Here,

Q is given by Equation (4.4.8):

Q({θ′} × A; θ, x) = ρ(θ′, θ, x)

∫

Rq

1{(x+ψ(θ′,θ,x,z))∈A}µ(dz)

From this, we find

ρ(θ′, θ, x) = Q({θ′} × Rn; θ, x)

ρ is measurable due to Q being a probability measure. Next write, for any x′,

Q({θ′}, x′; θ, x) = ρ(θ′, θ, x) · P{x+ ψ(θ′, θ, x, z) = x′}
= ρ(θ′, θ, x) · P{ψ(θ′, θ, x, z) = x′ − x}
= ρ(θ′, θ, x) · P{z = ψqfθ′,θ,x(x

′ − x)}
= ρ(θ′, θ, x) · µ(ψqfθ′,θ,x(x′ − x))

where ψqfθ′,θ,x is such that µL{u | ψqfθ′,θ,x(u) ∈ B} = ψ(θ′, θ, x, B). Therefore,

µ(ψqfθ′,θ,x(x
′ − x)) =

Q({θ′}, x′; θ, x)
ρ(θ′, θ, x)

and

ψqfθ′,θ,x(x
′ − x)) = µqf

(
Q({θ′}, x′; θ, x)
ρ(θ′, θ, x)

)

Hence with this, ψ is defined, and it is measurable due to measurability of Q and ρ.

4.6 Stochastically and dynamically coloured Petri nets into hybrid stochastic differential equations 93

Note that the definition of firing function yields x+ψ(ϑ, θ, x, z) ∈ Eϑ since the firing function

of a transition delivers tokens in its output places with colours corresponding to the colour

type of the output places.

pP : The Poisson random measure is constructed as follows: pP is such that at exponentially

distributed intervals with intensity RΛ it produces a “mark” (z1, z), where z1 ∼ U [0, RΛ]

and z ∼ µ. Here, RΛ is the upperbound of Λ defined above.

{Wt}: This is generated according to the standard mechanism to generate Wiener processes. An h-

dimensional Wiener process is constructed by collecting a number of h =
∑|P|

i=1m
max
i h(Pi)

independent one-dimensional Wiener processes in a vector.

Adding zeros and transforming discrete state vectors We add a sufficient number of zeros to

some of the elements in order to create a constant dimension for the HSDESDCPN hybrid

state space. Denote n = maxθ d(θ), 0
a as a column vector of zeros in Ra and 0a×b as a

matrix of zeros in Ra×b, then E is redefined as E = {{θ} × (Eθ × Rn−d(θ)); θ ∈ M}; f is

redefined as Col{f, 0n−d(θ)}; g is redefined as Col{g, 0(n−d(θ))×Σim
max
i ·h(Pi)}; X0 is redefined

as Col{X0, 0
n−d(θ)} and ψ is redefined as Col{ψ, 0n−d(θ)}.

This shows that all HSDESDCPN elements can be characterised uniquely in terms of SDCPN

elements.

4.6.2 Probabilistic equivalence

Subsequently, we show that if the original SDCPN is executed on a probability space endowed

with sequences of standard Brownian motions (one sequence for each place) then the solution of

the constructed HSDESDCPN delivers a stochastic process which is probabilistically equivalent to

the process defined by the original SDCPN. This is done by showing:

• Equivalence of initial states

• Equivalence of continuous evolution until first jump

• Equivalence of time of jumps

• Equivalence of size of jumps

• Equivalence of processes after the first jump

94 Stochastically and dynamically coloured Petri nets

Equivalence of initial states The initial HSDESDCPN-process state (θ0, X0) at t = τ0 is equivalent

to the initial SDCPN state through the mapping constructed above. If Iqf denotes the quantile

function of I and µqfθ0,X0
denotes the quantile function of µθ0,X0 , then the random variable

(M0, C0) = Iqf (U) is equivalent to the random variable (θ0, X0) = µqfθ0,X0
(U). Due to equivalence

between I and µθ0,X0 , the initial states are probabilistically equivalent.

Equivalence of continuous evolution until first jump By the unique mapping of SDCPN

elements into HSDE elements, for t > τ0, up until the first jump, the HSDESDCPN state is

probabilistically equivalent to the original SDCPN state: The continuous part of the SDCPN

marking is composed of the colours of all tokens in all places in a specific unique order. For

the constructed HSDESDCPN, the continuous state is also composed of these colours and in the same

order.

At times t when no jump occurs, the HSDESDCPN-process evolves according to f and g and

the SDCPN-process evolves according to V = {VP ;P ∈ P} and W = {WP ;P ∈ P}. As

long as no jump occurs, the stochastic differential equations defining the SDCPN token colours are

driven by Brownian motions. The stochastic differential equations defining the HSDE continuous

state are driven by Wiener processes. The collection of Brownian motions and the Wiener process

are probabilistically equivalent in the sense that they are both Gaussian with the same mean and

variance (see Appendix A). Through the mappings between f and V and between g and W
developed above, and due to the equivalence of the Brownian motions and the Wiener process

used, these evolutions provide probabilistically equivalent processes, i.e., for all t > τ0, until the

first jump, Xt = Ct in probabilistic sense.

Equivalence of time of jumps The times of jumps are generated by forced jumps and

spontaneous jumps. In SDCPN, the forced jumps are represented by guard transitions; in HSDE,

the forced jumps are represented by continuous state space boundary hits. Due to the mapping

between the boundary of the HSDESDCPN state space ∂Eθ and the transition guards of the guard

transitions {∂GT ;T ∈ TG}, the HSDESDCPN forced jumps and the SDCPN forced jumps occur at

the same time. The HSDESDCPN spontaneous jumps are generated by a Poisson random measure

that uses a rate Λ. Due to definition of Poisson random measure, the time until the next jump is

exponential with intensity Λ. The SDCPN spontaneous jumps are generated by the delay transitions

that use rates {DT ;T ∈ TD}. Each pre-enabled delay transition T is enabled after an exponential

time with intensity DT . The time until the first delay transition enabling is also exponential, with

an intensity equal to the sum of all DT of pre-enabled delay transitions. Due to the constructed

mapping between Λ and {DT ;T ∈ TD}, the time of spontaneous jump is therefore according to the

same rate for both HSDESDCPN and SDCPN.

4.6 Stochastically and dynamically coloured Petri nets into hybrid stochastic differential equations 95

Equivalence of size of jumps At times when a jump occurs, the HSDESDCPN-process makes a

jump generated by ψ, ρ and µ, while the SDCPN-process makes a jump generated by F . Through

the mapping between ψ, ρ, µ and F , these jumps provide probabilistically equivalent processes.

Equivalence of processes after the first jump After the first jump, equivalence is shown in a

similar way as above.

4.6.3 Verification of H1-H8

Finally, we show that if additionally, conditions S1-S6 are satisfied for the original SDCPN,

then HSDE conditions H1-H8 are satisfied for the resulting HSDESDCPN.

H1 Condition H1 reads: For all θ ∈ M there exists a constant K(θ) such that for all x ∈ Rn,

|f(θ, x)|2 + ‖g(θ, x))‖2 ≤ K(θ)(1 + |x|2), where |a|2 = ∑
i(ai)

2 and ||b||2 = ∑
i,j(bij)

2.

This condition H1 is verified as follows: from the construction of f and g above we have

f(θ, x) = Col
|P|
i=1

{
Colmi

j=1{VPi
(cij)}

}

and g(θ, x) = Row{Diag
|P|
i=1

{
Diagmi

j=1{WPi
(cij)}

}
, OΣ

|P|
i=1(m

max
i −mi)h(Pi)},

where x = Col
|P|
i=1

{
Colmi

j=1{cij}
}

.

Use that under condition S1, for all P ∈ P , there existKv
P andKw

P such that for all c ∈ C(P),
|VP (c)|2 ≤ Kv

P (1 + |c|2) and ‖WP (c)‖2 ≤ Kw
P (1 + |c|2).

This gives

|f(θ, x)|2 + ‖g(θ, x)‖2 =

=

|P|∑

i=1

mi∑

j=1

(VPi
(cij))

2 +

|P|∑

i=1

mi∑

j=1

(WPi
(cij))

2

≤
|P|∑

i=1

mi∑

j=1

Kv
Pi
(1 + |cij|2) +

|P|∑

i=1

mi∑

j=1

Kw
Pi
(1 + |cij|2)

=

|P|∑

i=1

mi∑

j=1

(Kv
Pi
+Kw

Pi
)(1 + |cij|2)

≤ K(θ)(1 + |x|2)

where K(θ) = max{maxi(K
v
Pi
+Kw

Pi
),
∑|P|

i=1mi(K
v
Pi
+Kw

Pi
)}.

H2 Condition H2 reads: For all r ∈ N and for all θ ∈ M there exists a constant Lr(θ) such that for

all x and y in the ball {z ∈ Rn | |z| ≤ r + 1}, |f(θ, x)− f(θ, y)|2 + ‖g(θ, x)− g(θ, y)‖2 ≤
Lr(θ)|x− y|2.

96 Stochastically and dynamically coloured Petri nets

This condition H2 is verified as follows: Use that under condition S1, for all r ∈ N and

all P ∈ P , there exist Lvr,P and Lwr,P such that for all a, b ∈ {z ∈ C(P)| |z| ≤ r + 1},

|VP (b)− VP (a)|2 ≤ Lvr,P |b− a|2 and ‖WP (b)−WP (a)‖2 ≤ Lwr,P |b− a|2. Then

|f(θ, x)− f(θ, y)|2 + ‖g(θ, x)− g(θ, y)‖2 =

=

|P|∑

i=1

mi∑

j=1

|VPi
(bij)− VPi

(aij)|2 +
|P|∑

i=1

mi∑

j=1

‖WPi
(bij)−WPi

(aij)‖2

≤
|P|∑

i=1

mi∑

j=1

Lvr,Pi
|bij − aij |2 +

|P|∑

i=1

mi∑

j=1

Lwr,Pi
|bij − aij |2

=

|P|∑

i=1

mi∑

j=1

(Lvr,Pi
+ Lwr,Pi

)|bij − aij |2

≤
|P|∑

i=1

mi∑

j=1

Lr(θ)|bij − aij |2

= Lr(θ)|x− y|2

where Lr(θ) = maxi{Lvr,Pi
+ Lwr,Pi

}.

H3 Condition H3 reads: For each θ ∈ M, Λ(θ, ·) : Rn → [0,∞) is continuous and bounded with

upper bound a constant RΛ.

This condition H3 is verified as follows: Use that for all T ∈ TD, DT is continuous (condition

S3) and bounded. We find that Λ is continuous and bounded as well, with RΛ = maxθ∈M{k ·
RD; the number of elements in the multi-set of transitions in TD that, under token distribution

θ, are pre-enabled = k}.

H4 Condition H4 reads: For all θ, ϑ ∈ M, the mapping ρ(ϑ, θ, ·) : Rn → [0,∞) is continuous.

This condition H4 is verified as follows: In the construction of ρ it was derived that

ρ(ϑ, θ, x) = Q({ϑ} × Rn; θ, x). Q is constructed from elements D, G and F , and is

continuous due to DT and FT being continuous for all T ∈ T (conditions S3 and S5).

H5 Condition H5 reads: For all r ∈ N there exists a constant Mr(θ) such that

sup
|x|≤r

∫

Rq

|ψ(ϑ, θ, x, z)|µ(dz) ≤Mr(θ), for all ϑ, θ ∈ M

To verify this condition notice that the above inequality means that the expected size of the

jump in Xt should be bounded, i.e., if θt jumps from θ to ϑ and X ′ denotes the continuous

state after the jump, then sup|x|≤r E{|X ′ − x|} ≤ Mr(θ), for all ϑ, θ ∈ M, x ∈ Eθ, X
′ ∈ Eϑ

in the domain of ψ.

4.7 Discussion of conditions of Theorem 4.5 97

This follows from condition S2 if one realises that if the HSDE is modelled by an SDCPN

then the size of the jump is determined by the combination of firing functions of transitions

firing at the jump. Since condition S2 ensures that the size of the jump in the token colours

is finite, there exists Mr(θ) that ensures that the size of the jump in the HSDE is bounded by

Mr(θ).

H6 Condition H6 reads: ψ satisfies: |ψ(θ, θ, x, z)| = 0 or > 1 for all θ ∈ M, x ∈ Rn, and z ∈ Rq.

This condition H6 follows from condition S2 if one notes that |ψ(θ, θ, x, z)| provides the size

of the jump in Xt (if θt jumps from θ back to θ).

H7 Condition H7 reads: {(θ∗t (ω), X∗
t (ω))} hits the boundary ∂E , {{θ} × ∂Eθ; θ ∈ M} a finite

number of times on any finite time interval

This condition H7 follows from condition S4.

H8 Condition H8 reads: |ϑi − ϑj | > 1 for i 6= j, with | · | a suitable metric well defined on M.

This condition follows from condition S6.

This completes the proof of Theorem 4.5.

4.7 Discussion of conditions of Theorem 4.5

This section discusses the conditions for Theorem 4.5 (SDCPN into HSDE).

4.7.1 Discussion on finite number of tokens

The first set of conditions for Theorem 4.5 is that the initial marking does not enable a transition,

that none of the transition firings enable a guard transition, that the delay rates are bounded, and

that for t → ∞ the number of tokens remains finite. Here, the condition on the initial marking

can be easily verified. The condition on the immediate enabling of guard transitions is discussed in

Section 4.7.5, which refers to Section 3.7.4. The condition on bounded delay rates is discussed in

Subsection 4.7.4. We discuss the condition on finite number of tokens next.

This condition has been introduced in Theorem 4.5 in order to guarantee that the reachability

graph (RG) of the SDCPN exists and is finite, i.e., the SDCPN is bounded (see Subsection 2.2.2).

The RG and its nodes are used in the construction of HSDESDCPN elements M, f and g, and

indirectly also in the construction of E, Λ, ρ and ψ. A finite RG makes this construction easier.

A sufficient condition for a SDCPN to be bounded is if its initial marking contains a finite

number of tokens (note this is satisfied due to definition of I), and each transition, when firing,

produces a number of tokens equal to the number of tokens removed by the firing. Note that for

98 Stochastically and dynamically coloured Petri nets

most SDCPN applications that we made in practice, these sufficient conditions are satisfied (see

also Chapter 5) hence there has been no real practical reason to explore options where the number

of tokens could grow to infinity.

In Section 3.7.1 the same condition was discussed for DCPN as part of the theorem mapping

DCPN into PDP. The difference between PDP and HSDE on this point is that PDP allows the

discrete state space to be countable, whereas HSDE requires the discrete state space to be finite.

In Section 3.7.1 we provided a discussion that argued that the condition of finite number of tokens

could be relaxed for DCPN. Due to the more stringent HSDE condition on the size of the discrete

state space, this more relaxed condition does not hold true for SDCPN if it is mapped to an HSDE.

4.7.2 Discussion on Condition S1 (growth and local Lipschitz)

Condition S1 reads: for all r ∈ N and for all P ∈ P , there exist Kv
P , Lvr,P , Kw

P and Lwr,P such

that for all c ∈ C(P) and any a, b in the ball {z ∈ C(P) | |z| ≤ r + 1},

• |VP (c)|2 ≤ Kv
P (1 + |c|2)

• |VP (b)− VP (a)|2 ≤ Lvr,P |b− a|2

• ‖WP (c)‖2 ≤ Kw
P (1 + |c|2)

• ‖WP (b)−WP (a)‖2 ≤ Lwr,P |b− a|2.

This condition has been introduced in order to satisfy HSDE conditions H1 and H2. Note that these

conditions are standard sufficient conditions for a stochastic differential equation to have a pathwise

unique solution. Since the stochastic differential equations in SDCPN are already assumed to have

probabilistically unique solutions, this condition S1 is not too stringent.

4.7.3 Discussion on Condition S2 (bounded jumps)

Condition S2 reads: If (Mt, Ct) denotes the SDCPN marking at time t and τ denotes a time at

which one or more transitions fire, then there exists RS(Mt) < ∞ such that |Cτ − Cτ−| = 0 or

∈ (1, RS(Mτ−)]. Here, Ct denotes a vector Ct with a sufficient number of zeros added so that Cτ

and Cτ− have the same number of vector elements.

This condition has been introduced in order to satisfy HSDE conditions H5 and H6, which are

conditions on the mapping ψ that determines the size of jumps in the continuous state. Due to

condition H5, this size of jump should either be zero or be larger than one, and due to condition

H6, the expected size of jump should be bounded. Condition S2 ensures that both H5 and H6 are

satisfied. Due to the complicated relation between F and ψ it is not possible to translate this to

straightforward sufficient conditions on F , rather than on Ct.

4.7 Discussion of conditions of Theorem 4.5 99

4.7.4 Discussion on Condition S3 (continuous and bounded delays)

Condition S3 reads: For all T ∈ TD, DT is continuous and bounded with upperbound RD.

This condition is easily verified. Note that a delay transition for which DT = ∞ does not add

value to the SDCPN definition since in effect such transition is an immediate transition. Therefore,

the boundedness condition is a reasonable restriction.

4.7.5 Discussion on Condition S4 (finite number of firings)

Condition S4 reads: In a finite time interval, each guard transition is expected to fire a finite

number of times.

A version of this condition was also posed on DCPN in the mapping from DCPN to PDP. For

a discussion we refer to Section 3.7, which also discusses the condition on the immediate enabling

of guard transitions.

4.7.6 Discussion on Condition S5 (continuous firing measures)

Condition S5 reads: For all T ∈ T , c ∈ C(P (Ain,OE(T))) and e ∈ {0, 1}|Aout(T)|, FT (e, ·; c) is

continuous.

This condition has been introduced in addition to S3 to ensure that ρ(ϑ, θ, ·) is continuous. Note

that FT is a probability measure hence is measurable. Its continuity puts a verifyable restriction on

it.

4.7.7 Discussion on Condition S6 (distinguishable token distributions)

Condition S6 reads: If M = {Mt | (Mt, Ct) is a reachable marking, t ≥ 0} is the set of

reachable token distributions, then for all M i,M j ∈ M, M i 6=M j , |M i −M j | > 1.

This condition was introduced to satisfy HSDE condition H8, which states that for all ϑi, ϑj ∈
M, |ϑi − ϑj | > 1. Due to the construction of ϑi in the mapping from SDCPN to HSDE, i.e.,

ϑi = M i, we find that ϑi is constructed as the vector that counts the numbers of tokens in each

of the places. From this, we find that |ϑi − ϑj | ≥ 1. The strict inequality |ϑi − ϑj | > 1 is not

automatically satisfied. However, it can be ensured if we redefine ϑi to be, e.g., the ith unit vector

of size |M| = N . For reduced readability, the latter step is not done in the actual proof, but it is a

formality.

100 Stochastically and dynamically coloured Petri nets

4.8 Equivalence between SDCPN and stochastic hybrid au-

tomata

In Sections 4.5 and 4.6, equivalence relations have been established between SDCPN and hybrid

stochastic differential equations (HSDE). This section shows that similar equivalence relations exist

between SDCPN and a particular class of stochastic hybrid automaton, referred to as general

stochastic hybrid system (GSHS), [BL06]. A GSHS collects the elements that define the hybrid

state space, the continuous evolution mechanism and the jump mechanism. In [BL06], it is shown

that the execution of a GSHS defines a GSHP. In the remainder of this section we first describe

GSHS and explain how these relate to HSDE. Subsequently, we formulate the equivalence relations

between GSHS and SDCPN.

4.8.1 Definition of GSHS and its execution

This section presents, following [BL06], a definition of general stochastic hybrid system

(GSHS) and its execution. Next, it explains the differences with HSDE.

Definition 4.3 (General stochastic hybrid system). A GSHS is an automaton (K, d, X , f , g, Init, λ,

Q), where

• K is a countable set.

• d : K → N maps each θ ∈ K to a natural number.

• X : K → {Eθ; θ ∈ K} maps each θ ∈ K to an open subset Eθ of Rd(θ). With this, the hybrid

state space is given by E , {{θ} × Eθ; θ ∈ K}.

• f : E → {Rd(θ); θ ∈ K} is a vector field.

• g : E → {Rd(θ)×h; θ ∈ K} is a matrix field, with h ∈ N.

• Init: B(E) → [0, 1] is an initial probability measure, with B(E) the Borel σ-algebra on E.

• λ : E → R+ is a jump rate function.

• Q : B(E)× (E ∪ ∂E) → [0, 1] is a GSHS transition measure, where ∂E , {{θ}× ∂Eθ; θ ∈
K} is the boundary of E, in which ∂Eθ is the boundary of Eθ.

Definition 4.4 (GSHS execution). A stochastic process {θt, Xt} is called a GSHS execution if there

exists a sequence of stopping times 0 = τ0 < τ1 < τ2 · · · such that for each k ∈ N:

• (θ0, X0) is an E-valued random variable extracted according to probability measure Init.

4.8 Equivalence between SDCPN and stochastic hybrid automata 101

• For t ∈ [τk, τk+1), θt = θτk and Xt = Xk
t , where for t ≥ τk, Xk

t is a solution of the

stochastic differential equation dXk
t = f(θτk , X

k
t)dt+g(θτk , X

k
t)dB

θτk
t with initial condition

Xk
τk

= Xτk , and where {Bθ
t } is h-dimensional standard Brownian motion for each θ ∈ K.

• τk+1 = τk + σk, where σk is chosen according to a survivor function given by F (t) =

1{t<τ∗} · exp(−
∫ t
0
λ(θ,Xk

s)ds). Here, τ ∗ = inf{t > τk | Xk
t ∈ ∂Eθτk} and 1 is indicator

function.

• The probability distribution of (θτk+1
, Xτk+1

), i.e., the hybrid state right after the jump, is

governed by the law Q(·; (θτk , Xτk+1−)).

[BL06] show that under assumptions G1-G4 below, a GSHS execution is a strong Markov

process and has the càdlàg property (right continuous with left hand limits).

G1 f(θ, ·) and g(θ, ·) are Lipschitz continuous and bounded. This yields that for each initial state

(θ, x) at initial time τ there exists a pathwise unique solution Xt to dXt = f(θ,Xt)dt +

g(θ,Xt)dBt, where {Bt} is h-dimensional standard Brownian motion.

G2 λ : E → R+ is a measurable function such that for all ξ ∈ E, there is ǫ(ξ) > 0 such that

t→ λ(θt, Xt) is integrable on [0, ǫ(ξ)[.

G3 For each fixed A ∈ B(E), the map ξ → Q(A; ξ) is measurable and for any (θ, x) ∈ E ∪ ∂E,

Q(·; θ, x) is a probability measure.

G4 If Nt =
∑

k 1{t≥τk}, then it is assumed that for every starting point (θ, x) and for all t ∈ R+,

ENt <∞. This means, there will be a finite number of jumps in finite time.

Note that HSDE and GSHS have a lot of similarities. Both concatenate different solutions

of stochastic differential equations with hybrid jumps at each moment of switching to another

stochastic differential equation. Hence the differences are of a rather technical nature. Below,

the technical differences are collected between GSHS and its GSHP execution, versus HSDE and

its GSHP solution:

1. For GSHS, the discrete state space is a countable space of discrete variables. For HSDE, the

discrete state space is a finite set.

2. For GSHS, the continuous state is Euclidean with a dimension dependent on θ. For HSDE,

the continuous state is Euclidean with constant dimension n.

3. The times of spontaneous jump of the GSHS execution are driven by a survivor function

which imposes a stochastic basis. For HSDE, the times of spontaneous jumps are driven by

a Poisson random measure endowed upon a given stochastic basis.

102 Stochastically and dynamically coloured Petri nets

4. For GSHS, the size of jump is driven by a transition measure Q. For HSDE, the jump size is

determined by probability measure µ and measurable mappings ψ and ρ.

5. GSHS involves |K| Brownian motions. HSDE involves one Wiener process only.

6. For GSHS, the drift and diffusion coefficient are assumed (globally) Lipschitz and bounded.

For HSDE, the drift and dissusion coefficient are locally Lipschitz and are allowed to grow

with the continuous state.

For 1) and 2), GSHS has as advantage of being more general than HSDE. HSDE however has

significant advantages regarding issues 3)-6): Regarding 3)-5), HSDE has the advantage that this

allows to establish the semi-martingale property. The semi-martingale property of GSHS execution

is unknown, which prohibits the use of Itô’s differentiation rule for semi-martingales. Regarding 6),

HSDE removes the particular restriction of GSHS which excludes jump linear systems. For GSHS,

this restriction unfortunately excludes most existing work on stochastic hybrid systems.

4.8.2 Equivalence relations between SDCPN and GSHS

This section formulates the equivalence relations between SDCPN and GSHS.

Theorem 4.6 (GSHS into SDCPN). Consider an arbitrary GSHS (K, d, X , f , g, Init, λ, Q)

with a finite domain K. If for each θ and initial value X0, the stochastic differential equation

dXt = f(θ,Xt)dt + g(θ,Xt)dBt has a unique solution in probabilistic sense, then the elements

of this GSHS can be mapped into the elements of an SDCPN (P , T , A, N , S, C, I, V , W , G,

D, F) satisfying R0-R4. If the resulting SDCPN is executed on a probability space endowed with

sequences of standard Brownian motions (one sequence for each place), then the resulting SDCPN

process and the GSHS execution are probabilistically equivalent.

Proof. See [EB06]. This proof is similar to the proof of Theorem 3.1 of PDP into DCPN, with the

addition of Brownian motion in the continuous evolutions.

Theorem 4.7 (SDCPN into GSHS). Consider an arbitrary SDCPN (P , T , A, N , S, C, I, V ,

W , G, D, F) satisfying R0-R4. If in the initial marking no transition is enabled, if a transition

firing does not enable guard transitions, and if the number of tokens remains finite for t → ∞,

then the elements of this SDCPN can be mapped into the elements of a GSHS (K, d, X , f , g,

Init, λ, Q). If the original SDCPN is executed on a probability space endowed with sequences of

standard Brownian motions (one sequence for each place) then the resulting GSHS execution and

the SDCPN process are probabilistically equivalent.

Proof. See [EB06]. This proof is similar to the proof of Theorem 3.2 of DCPN into PDP, with the

addition of Brownian motion in the continuous evolutions.

4.9 Concluding remarks 103

Notice that the proofs of equivalence between SDCPN and GSHS actually resemble those of

equivalence between DCPN and PDP rather than those of equivalence between SDCPN and HSDE.

This is due to the time of jump mechanism of both GSHS and PDP being a survivor function, while

HSDE uses Poisson random measure as an integrated part of the stochastic differential equations.

4.9 Concluding remarks

General stochastic hybrid processes (GSHP) extend PDP by the inclusion of diffusion.

Diffusion exists in air transport operations for example in the form of stochastic variations around

position and velocity of an aircraft, due to, e.g., weather, navigation or surveillance uncertainties, or

engine power fluctuations. GSHP can be defined in several ways. In [Blo03] and [BBEP03], GSHP

are defined as the solution process of hybrid stochastic differential equation (HSDE) on a hybrid

state space. In [BL06], they are defined as the execution of a general stochastic hybrid system

(GSHS).

This chapter has extended DCPN to stochastically and dynamically coloured Petri net (SDCPN)

and has shown that under some mild conditions, any SDCPN can be mapped into the elements

of an HSDE, such that the SDCPN process and the resulting HSDE process are probabilistically

equivalent. Moreover, it has shown that any HSDE can be mapped into an SDCPN such that

the HSDE process and the resulting SDCPN process are probabilistically equivalent. Similar

equivalence relations are shown between SDCPN and GSHS. This implies that SDCPN, HSDE

and GSHS are bisimilar (see also Section 3.8).

To our best knowledge, SDCPN is the only hybrid Petri net that incorporates diffusion.

The key result of this chapter is that this is the first time that proof of equivalence between GSHP

and Petri nets has been established. This significantly extends the modelling power hierarchy of

[MT94], [MFT00] in terms of Petri nets and Markov processes, see Figure 1.1. The SDCPN-

inherited modelling power can be used to model GSHP. In addition, GSHP, HSDE and GSHS

theoretical results like stochastic analysis, stability and control theory, now also apply to SDCPN

processes.

Because of this, for accident risk modelling in air transport operations, in, e.g., [BBB+01,

BKB03, BBK+05] SDCPNs are adopted for their specification power and for their GSHP inherited

stochastic analysis power. Here, SDCPN are used as a basis for a Monte Carlo simulation, and the

GSHP inherited stochastic analysis properties are used to make the simulations and analysis more

efficient.

104 Stochastically and dynamically coloured Petri nets

Chapter 5

Compositional specification of SDCPN

5.1 Introduction

By the very nature of air transport operations, the decision-makers are highly distributed:

per aircraft there is a crew of pilots, and per air traffic control centre there are many human

operators. In addition, the safety-related decision-making process involves interactions of these

humans with each other and with a random and often unpredictable environment (e.g., varying

wind, thunderstorms), a large set of procedural rules and guidelines, many technical and automation

support systems, decision-makers at airline operation centres, etc. These aspects make the

specification of an unambiguous mathematical model of air transport operations a very challenging

task.

In order to capture the characteristics of air transport operations, Chapters 3 and 4 developed

dynamically coloured Petri net (DCPN) and stochastically and dynamically coloured Petri net

(SDCPN), and showed equivalence between DCPN and piecewise deterministic Markov process

(PDP) and equivalence between SDCPN and general stochastic hybrid processes (GSHP). With

this, in cases where GSHP (PDP) is an appropriate mathematical formalism to use for a particular

application, equipped with the proper analysis tools, SDCPN (DCPN) can be formally used instead

of GSHP (PDP) with the advantage of the graphical modelling support. The DCPN and SDCPN

formalisms have been successfully used in practical air transport applications, (e.g., [BKB03],

[BSEP03]). However, it was found that when being used for modelling more and more complex

multi-agent hybrid systems, the compositional specification power of SDCPN, but also of Petri net

classes in general, reaches its limitations. More specifically, the following problems were identified:

Problem A. For the modelling of a compositional Petri net for complex systems, a hierarchical

approach is necessary that separates local modelling issues from compositional or interaction

modelling issues.

106 Compositional specification of SDCPN

Problem B. Often the addition of an interconnection between two local Petri nets leads to a

necessary duplication of transitions and arcs within a local Petri net.

Problem C. The number of interconnections between the different local Petri nets tends to grow

quadratically with the size of the Petri net1.

This chapter aims to solve these problems for SDCPN, by combining and adopting approaches

from the literature, see Section 2.6, that solve problem A for other classes of Petri net, and by

developing novel approaches to solve problems B and C. It is noted that all approaches are similarly

applicable to DCPN. It is also noted that these approaches further increase the modelling power of

SDCPN, while maintaining the stochastic analysis power of GSHP.

To solve problem A, the compositional specification of an SDCPN for a complex operation

starts with developing a separate local Petri net (LPN) for each agent that exists in the operation

(e.g., air traffic controller, pilot, navigation and surveillance equipment). Counterparts of LPNs in

literature are the modules of [FKK97], the pages of [HJS90] and the components of [Kin97]. Next,

the LPNs are interconnected by arcs, and where necessary, by additional places and transitions. For

manageability, the following restriction is posed: the interactions between LPNs are not allowed

to change the number of tokens in an LPN. This restriction is also posed by [FKK97], but not

by [HJS90] or [Kin97]. Two types of interconnections between places and transitions in different

LPNs are introduced that ensure that this restriction holds true: (1) Enabling arc (or inhibitor arc)

from one place in one LPN to one transition in another LPN; and (2) Interaction Petri net (IPN)

from one (or more) transition(s) in one LPN to one (or more) transition(s) in another LPN by means

of ordinary arcs. Enabling and inhibitor arcs have been used widely in Petri net literature, including

[FKK97] for inhibitor arcs and [FAP97] for both types. They have the property that no tokens are

moved along them at the firing of a transition. IPNs are similar to the interconnection blocks of

[FKK97]. If an IPN consists of one place only, then the connection of two LPNs through an IPN

also has some similarity with place fusion, see, e.g., [HJS90] or [Kin97], except that our IPN will

not change the number of tokens in its connecting LPNs.

Each LPN is surrounded by a box, following, e.g., [FAP97] or [Kin97]. This alone, however,

does not solve problems B and C. Hence, following ideas of statecharts [Har87], arcs are introduced

that initiate at and/or end on the edge of an LPN-box, including a well-defined meaning in terms

of interconnections between LPN-boxes. To the best of our knowledge, this element, which

solves problems B and C, has no counterpart in the Petri net literature. The meaning of these

interconnections from or to an edge of a box allows several arcs or transitions to be represented by

only one arc or transition. In that sense, there is a relation with transition fusion used by [HJS90]

and with module folding used by [FKK97].

1A good example of a cluttering of interconnections can be found in [TTV06, Figure 7].

5.2 Local Petri nets-based specification of an SDCPN 107

The mathematical formalisation of the approach thus developed is referred to as an SDCPNimt,

where imt refers to interconnection mapping types. This formalisation includes the derivation of

unambiguous rules in the use of interconnection mapping types and in transforming an SDCPNimt

to an SDCPN.

This chapter is organised as follows: Section 5.2 describes how an SDCPN can be specified in

a logical sequence of local Petri nets for each entity of an agent, and explains how the entities

of agents are connected without drastically changing the structure of low-level entities. This

solves problem A above. Section 5.3 defines new Petri net interconnection mapping types which

avoid the internal duplication problem (problem B) and the problem of cluttering interconnections

(problem C). Section 5.4 formally extends the SDCPN definition to SDCPNimt, to include these new

interconnection mapping types, and discusses the relation between SDCPNimt and GSHP. Finally,

Section 5.5 gives concluding remarks.

5.2 Local Petri nets-based specification of an SDCPN

The compositional specification of a stochastically and dynamically coloured Petri net for a

complex process with many different interacting agents such as exist in air transport operations

(e.g., air traffic controllers, pilots, navigation and surveillance equipment), is a bottom-up process.

Prior to starting this compositional process, per agent the relevant low-level functional entities have

to be identified based on expert domain knowledge of that agent. The compositional specification

idea is then first to specify one small Petri net per functional entity of an agent, and refer to this as

a local Petri net (LPN). Next, the interactions between these LPNs are specified.

The specification of the various elements of one LPN is explained in Subsection 5.2.1; this has

to be accomplished for all LPNs. Subsection 5.2.2 describes how the interconnections between

these LPNs are established.

5.2.1 Specification of local Petri net

Specification of elements P , T , A, N

First, places (drawn as circles) are identified for the LPN. These places may represent

operational or physical conditions (nominal modes and non-nominal modes). Next, the transitions

are identified: If between two (or more) places, say P1 and P2, a mode switch might occur, then

one transition (rectangle) is drawn, with arcs (arrows) connecting the places and the transition. A

transition may have multiple input places, if a switch requires multiple pre-conditions to hold true.

In SDCPN there is also freedom in the range of post-conditions: a transition may fire zero or one

tokens to each output place. This is in contrast with most other Petri nets classes, in which tokens

108 Compositional specification of SDCPN

are fired to all output places.

If the LPN graph has been specified, the places are gathered in the set of places P , the transitions

are gathered in the set of transitions T , and the arcs are gathered in the set of arcs A. The node

function N specifies for each arc which place and transition it connects.

Specification of elements S, C, V and W

A complex stochastic dynamic process such as in air transport operations cannot be described

by places, transitions and arcs alone. Some processes may be continuous rather than discrete, and

the location of the tokens or the time of firing of the transitions may be dependent of the value of

such continuous valued processes.

In SDCPN, a place can be associated with a particular stochastic differential equation (SDE),

and a token can have a value. From a particular initial value onwards, this token value equals the

solution of the SDE associated with the place in which the token resides. After a transition has fired,

its output tokens will follow the SDEs associated with the output places. Note that the identification

of several SDEs for one original discrete state will necessitate the introduction of several new places

(and transitions) since each place can only be associated with one SDE.

If all SDEs have been specified, their coefficients are collected in sets V = {VP ;P ∈ P} and

W = {WP ;P ∈ P}: For each P , VP equals the drift coefficient of P ’s SDE, and WP equals

the diffusion coefficient. The function C specifies the dimensions of all SDEs: If for P ∈ P ,

VP (·) ∈ Rn, then C(P) = Rn; this makes that a token in P has a value in Rn, with n being

P -specific. The set S is defined to be the collection {C(P);P ∈ P}. Some places may not be

associated with an SDE; for these places C(P) = R0 , ∅, VP and WP are not defined, and the

tokens will be the ‘normal’ black dots.

Specification of elements G, D, F and I in local Petri net terms

Next, for each transition T ∈ T , one should determine whether it is a guard transition, a delay

transition or an immediate transition. A guard transition fires if the combined colours of its input

tokens reach a boundary value. A delay transition fires after a random delay, hence models a

duration. An immediate transition fires without delay. The guard transitions are collected in the

set TG, the delay transitions are collected in TD and the immediate transitions are collected in the

set TI . Subsequently, the guards G (by means of the boundary values on the token colours) and

the delays D (i.e., the jump intensity for the delays) are specified in detail. The firing measure F
describes the colours of the tokens fired by a transition into its output places, given the colours of

the tokens in the input places. Finally, the initial marking I describes which place(s) of the LPN

initially contain one or more token(s) and describes the initial colour values of these tokens, hence

5.2 Local Petri nets-based specification of an SDCPN 109

it describes the initial state of the process modelled by the SDCPN. It is possible to define several

or a continuum of initial states and specify the choice by means of a probability measure.

5.2.2 Interconnections between LPNs

The interconnections between the LPNs have to be specified in a way that allows to start at the

lowest level and then step by step to go up to the highest level, and such that an interconnection at a

higher level does not imply a significant change at a lower level2. In this subsection, specific types

of interconnections are identified that support such specification in a comprehensive way.

Following [FKK97], one step in enabling a systematic bottom-up specification of a Petri net is

to ensure that each LPN always contains exactly one token. For air transport types of applications

it often is useful to allow multiple tokens to be within one LPN, e.g., one for each aircraft. Hence,

for SDCPN we relaxed the one-token-principle to the following requirement: all interconnections

between LPNs shall be such that the number of tokens in an LPN is not directly influenced by these

interconnections. Subsequently we identified two types of interconnections that satisfied our above

requirement:

• Enabling arc (or inhibitor arc) from one place in one LPN to one transition in another LPN.

• Interaction Petri Net (IPN) from one (or more) transition(s) in one LPN to one (or more)

transition(s) in another LPN.

Enabling and inhibitor interconnections are illustrated in Figures 5.1 and 5.2, respectively. Note

that in these figures, each LPN is surrounded by a box. This boxing idea has also been used by,

e.g., [FAP97] and [Kin97].

LPN A

P1

LPN B

T

P2

Figure 5.1 Illustration of an enabling arc from one place in LPN A to one transition in LPN B.

Transition T can only fire if both its input places, P1 and P2, contain a token. However, upon firing,

T does not remove the token from the place P1 to which it is connected by an enabling arc

The transition at the tip of the enabling or inhibitor arc (i.e., transition T in LPN B in Figures

5.1 and 5.2) can only fire if the process modelled by LPN A is in a particular state or marking, and

2The typical exception to this is caused by non-local influences on G, D and F . We come back to this issue later.

110 Compositional specification of SDCPN

LPN A

P1

LPN B

T

P2

Figure 5.2 Illustration of an inhibitor arc from one place in LPN A to one transition in LPN B.

Transition T can only fire if place P1 to which it is connected by an inhibitor arc does not contain

a token (and place P2 does)

it may use the information existing in this marking of LPN A. For example, it may appear that the

guard or delay of transition T in LPN B is dependent of the colour of the token in place P1 in LPN

A; however, the transition should not disturb the local process within LPN A. To model this, the

Petri net graph needs to be extended with an enabling arc from place P1 to transition T in order to

get access to this information without consuming the token from P1. Note that in addition, the firing

measure and the guard or delay of the transition, which in the previous subsection has only been

defined locally, needs to be adapted to allow for the extended number of input tokens. Since tokens

are not consumed through enabling arcs at a transition firing, the state of LPN A is not changed

through this firing. [FAP97] uses enabling arcs like this to model synchronisation. [FKK97] uses

generalised stochastic Petri nets which support inhibitor arcs but do not support enabling arcs;

however, [FKK97] does allow tokens of other modules be consumed and immediately placed back,

which is similar3 to using an enabling arc. Here, inhibitor arcs are generally used to model priority

constructs and enabling arcs are used to model synchronisation constructs.

An interaction Petri net (IPN) consists of one or more places, and zero or more transitions.

It connects, by means of ordinary arcs, one or more transition(s) in one LPN with one or more

transition(s) in another LPN. If necessary, additional enabling or inhibitor arcs can be used to further

connect the IPN with places or transitions in LPNs. An example of an IPN is given in Figure 5.3. It

can be easily verified that an IPN does not influence the number of tokens in the LPNs it connects.

Interaction Petri nets are used where enabling or inhibitor arcs are insufficient to model the

interconnection between two agents. For example, an IPN can temporarily hold on to state

information from its input LPN (i.e., LPN A in Figure 5.3) while the state of this input LPN itself

evolves further. Also, IPNs can be used to connect two transitions, while enabling or inhibitor arcs

always connect a place with a transition. Note that our IPNs are similar to the interconnection

blocks of [FKK97]. The connection of two LPNs through an interaction Petri net also has some

similarity with place fusion, see, e.g., [HJS90] or [Kin97], except that our interaction Petri net will

3Though not the same: In case of timed events, placing a token back could be associated with sampling a new time

delay for this token, which may be different from the delay it had.

5.3 Interconnection mapping types 111

LPN A IPN LPN B

Figure 5.3 Illustration of an interaction Petri net from one transition in LPN A to two transitions

in LPN B. The IPN exists of at least one place and connects two LPNs by ordinary arcs. If necessary,

additional enabling or inhibitor arcs can be used to further connect the IPN with LPNs

not change the number of tokens in its connecting LPNs.

5.3 Interconnection mapping types

For a complex operation with many interactions between agents, the coupling of the LPNs

might lead to a combinatorial growth of the number of interconnections with the size of the Petri

net. To avoid this combinatorial growth as much as possible, this section develops eight hierarchical

clustering and interconnection mapping approaches. These developments are based on how [Har87]

composes statecharts and are referred to as interconnection mapping types I through VIII:

1. Interconnection mapping types I and II are defined to avoid possible duplication of transitions

and arcs within LPNs caused by specifying interconnections between LPNs (see Section

5.3.1).

2. Interconnection mapping types III, IV and V are defined to avoid cluttering of interconnec-

tions between places and transitions of different LPNs (see Section 5.3.2).

3. Interconnection mapping types VI and VII define interconnections from or to hierarchical

clusters of LPNs, which reduce the cluttering of interconnections (see Section 5.3.3).

4. Interconnection mapping type VIII avoids a duplication of transitions and arcs within an LPN

and duplication of arcs between LPNs (see Section 5.3.4).

5. And finally, several combinations of interconnection mapping types I through VIII are derived

(see Section 5.3.5).

The remainder of this section defines and illustrates these interconnection mapping types in more

detail. In Section 5.4, the SDCPN formal definition is extended to include these interconnection

mapping types.

112 Compositional specification of SDCPN

5.3.1 Avoid duplication of transitions and arcs within an LPN

Some interconnections between LPNs lead to duplication of transitions and arcs within one of

these LPNs. Suppose that a transition from place P3 to place P4 should only occur if P1 or P2

contains a token (or both), see Figure 5.4. Since a transition can only become enabled if all its input

places contain a token, the use of only one transition between P3 and P4, with additional input

places P1 and P2, would model an and-relation (i.e., both P1 and P2 contain a token) instead of an

or relation. To model an or relation, it is necessary to use two transitions T1 and T2 between P3 and

P4; one with P1 as additional input place, and the other with P2 as additional input place.

LPN A2

P2

LPN A1

P1

LPN B

P3

P4

T2T1

Figure 5.4 Illustration of duplication of transitions within an LPN

In most cases, since the duplicated transitions were one transition in the original LPN, they

do not have an essentially different meaning. In particular, since the interconnections are mostly

introduced to be able to make use of colours of tokens residing in other LPNs, these duplicated

transitions will have the same guard or delay and the same firing measure. This makes that

graphical duplication leads to reduced readability. This subsection presents some interconnection

mapping types to avoid such graphical duplication.

Remark 5.1. One may notice that in addition to the ‘or’ relation in Figure 5.4 one may think

of other types of relations, such as ‘and’, ‘exclusive or’. Modelling an and relation is virtually

standard practice in Petri net modelling: a transition that has two input places is enabled if both the

first and the second input place contains a token. No duplication of arcs or transitions is necessary

to model this. An exclusive or could be modelled by adding inhibitor arcs. For example, in Figure

5.4, if additional inhibitor arcs are drawn from P1 to T2 and from P2 to T1, then a transition from

5.3 Interconnection mapping types 113

P3 to P4 can only then occur if either P1 or P2 contains a token, not if both contain a token.

This situation does not appear to occur very often in practical applications, therefore no dedicated

interconnection shorthand is defined for it. (The construct itself can still be used, though.)

Remark 5.2. In an interconnection mapping type where a transition may be defined to represent

a number, say s, of ‘duplicated transitions’, this transition is considered to be replaced by s of

its copies. Each copy gets the same guard or delay function and the same firing measure as the

original transition, and is connected to other places in the same way as the original transition was,

if we exclude the arcs defining the interconnection mapping type considered (i.e., the enabling arcs

in case of Figure 5.4).

LPN interconnection mapping type I

Definition and example. Consider a set of s enabling arcs initiating at s places P1, . . . , Ps that

have the same colour type, merging into one arc and ending on one transition T that is in a different

LPN than the s places P1, . . . , Ps. This type of arc is called merging arc. The merging point is

denoted by a small black square.

Interconnection mapping type I means that transition T represents s actual duplicated transitions

T1, . . . , Ts, and that s enabling arcs A1, . . . , As are drawn; arc Ai connects place Pi with duplicated

transition Ti (i = 1, . . . , s). Figure 5.5 shows an example of this interconnection mapping type,

for s = 2. Interconnection mapping type I is not defined with inhibitor or ordinary arcs instead of

enabling arcs.

Interpretation and practical use. The most common application for interconnection mapping

type I is a situation in which transition T in Figure 5.5 can only be enabled if place P1 or place

P2 is current (or both). For example, T represents a mode switch from nominal operations to

non-nominal operations, P1 represents a non-nominal state for supporting system A1 and place P2

ditto for system A2. Transition T switches to non-nominal operations if supporting system A1 or

supporting system A2 goes into a non-nominal state (or both). This situation can only be modelled

if transition T is duplicated into T1 and T2. If T would have both P1 and P2 as input places, it

would only be enabled if both P1 and P2 contain a token, and this would model an and situation.

However, since in effect it is still only one transition, an interconnection mapping type notational

shorthand that presents it as such is a logical solution.

LPN interconnection mapping type II

Definition and example. Consider an enabling arc initiating at the edge of an LPN-box and

ending on a transition T in another LPN-box.

114 Compositional specification of SDCPN

LPN A2

P2

LPN A1

P1

LPN B

T

, LPN A2

P2

LPN A1

P1

LPN B

T2T1

Figure 5.5 LPN interconnection mapping type I. The point where several arcs merge into one arc

is represented by a small black square

Interconnection mapping type II means that the enabling arc represents s actual enabling arcs

A1, . . . , As, and that transition T represents s duplications T1, . . . , Ts, where s is the number of

places in the first LPN. These s places P1, . . . , Ps should have the same colour type. Arc Ai

connects place Pi with duplicated transition Ti (i = 1, . . . , s). Figure 5.6 shows an example of

this interconnection mapping type, for s = 2. Interconnection mapping type II is not defined with

inhibitor or ordinary arcs instead of enabling arcs.

LPN A

P1

P2

LPN B

T

,

LPN A

P1

P2

LPN B

T2T1

Figure 5.6 LPN interconnection mapping type II

Interpretation and practical use. The primary use for this structure is if transition T (or, rather,

its guard or delay) wants to make use of the colour of the token in LPN A, wherever this token

resides, and without consuming this token. This situation can only be modelled by duplication of

T into T1 and T2, since otherwise, because there is usually a token in either P1 or P2, not in both,

5.3 Interconnection mapping types 115

transition T would never be enabled.

5.3.2 Avoid cluttering of interconnections between LPNs

Interconnection mapping types I and II avoid the duplication problem, but there also exist other

types of interconnections that appear cluttered due to the many enabling arcs and IPNs between

places and transitions of different LPNs. The result becomes unreadable. This subsection presents

some interconnection mapping types to avoid this:

• Interconnection mapping types III-A and III-B can be applied to avoid cluttering of enabling

arcs or inhibitor arcs.

• Interconnection mapping types IV and V can be applied to avoid IPNs cluttering.

LPN interconnection mapping types III-A and III-B

Definition and example. For interconnection mapping type III-A, consider an enabling arc

initiating at a place P in one LPN and ending on the edge of another LPN’s box.

This means that the enabling arc represents s actual enabling arcs A1, . . . , As, where s is the

number of transitions in the second LPN. These transitions are referred to as T1, . . . , Ts. Arcs

A1, . . . , As all initiate at place P , and arc Ai ends on transition Ti (i = 1, . . . , s). Figure 5.7 shows

an example of interconnection mapping type III-A, for s = 2.

Interconnection mapping type III-B is similar to III-A, but with inhibitor arcs instead of enabling

arcs. A version with ordinary arcs is not defined.

LPN A

P

LPN B

,

LPN A

P

LPN B

Figure 5.7 LPN interconnection mapping type III-A. For type III-B, the enabling arcs are replaced

by inhibitor arcs

Interpretation and practical use. A practical use for interconnection mapping type III-A is

where any of the transitions in LPN B can only fire if place P in LPN A is current. In such

case these transitions in LPN B can also make use of the colour of the token in place P . For type

116 Compositional specification of SDCPN

III-B, any of the transitions in LPN B can only fire if place P in LPN A is not current. The use of

III-B with respect to III-A is mainly practical if LPN A contains more than two places and if the

transitions in LPN B do not need to make use of the colour of the token in place P .

LPN interconnection mapping type IV

Definition and example. Consider an ordinary arc initiating at the edge of an LPN-box and

ending on a place P within an IPN.

Interconnection mapping type IV means that the ordinary arc represents s actual ordinary arcs

A1, . . . , As, where s is the number of transitions in the LPN-box. These transitions are referred to

as T1, . . . , Ts. Arc Ai initiates at transition Ti (i = 1, . . . , s) and all arcs A1, . . . , As end on place

P .

Figure 5.8 shows an example of this interconnection mapping type, for s = 2. Interconnection

mapping type IV is not defined with enabling or inhibitor arcs instead of ordinary arcs.

LPN A IPN C

P

LPN B

,

LPN A IPN C

P

LPN B

Figure 5.8 LPN interconnection mapping type IV. LPN B has been ‘dashed-out’ since it does not

make part of the interconnection mapping type

Interpretation and practical use. An application for this interconnection mapping type is where

there is need for ‘asynchronous information exchange’. For example, each time a transition (any

transition) in LPN A fires, it sends some information to LPN B by means of a token into IPN C.

LPN B may not want to make immediate use of this information, e.g., in case it needs to finish

some other local actions first, and in the mean time LPN A may also want to continue with its own

actions instead of waiting for LPN B to be ready. Therefore, the token stays in IPN C until LPN B

is ready for it, after which the token is finally consumed by a transition in LPN B.

LPN interconnection mapping type V

Definition and example. Consider an ordinary arc that starts from a place P within an IPN and

ends on the edge of an LPN-box.

5.3 Interconnection mapping types 117

Interconnection mapping type V means that the ordinary arc represents s actual ordinary arcs

A1, . . . , As, where s is the number of transitions in the LPN. These transitions are referred to as

T1, . . . , Ts. All arcs A1, . . . , As initiate at place P , and arc Ai ends on transition Ti (i = 1, . . . , s).

Figure 5.9 shows an example of this interconnection mapping type, for s = 2. Interconnection

mapping type V is not defined with enabling or inhibitor arcs instead of ordinary arcs.

LPN A IPN C

P

LPN B

,

LPN A IPN C

P

LPN B

Figure 5.9 LPN interconnection mapping type V

Interpretation and practical use. Practical use for this interconnection mapping type V is

similar as for type IV, except that now the information in IPN C is used by any of the transitions in

LPN B, whichever is enabled first.

5.3.3 Clustering of LPNs

We saw that some of the previously defined interconnection mapping types represent shorthand

notations for situations where a transition needs access to the token in another LPN, wherever it

resides, or for situations where a token is used by another LPN, by whichever transition is enabled

first. These situations can also be extended to multiple LPNs. In this subsection, we define enabling

arcs that go from or to a cluster of LPNs. This is done following interconnection mapping types

VI and VII. Note that the definitions of these types have been modified slightly with respect to the

definitions given in [EKBK06] (i.e., the original paper on which this chapter was based).

LPN interconnection mapping types VI-A, VI-B and VI-C

Definition and example. For interconnection mapping type VI-A, consider one LPN A with a

place P , and a set of s LPNs Bi (i = 1, . . . , s), which set is enclosed by a large box, referred to as

cluster-box. Also consider an enabling arc that initiates at place P in LPN A and ends on the edge

of the cluster-box with the set of LPNs Bi.

Interconnection mapping type VI-A means that the enabling arc represents s actual enabling

arcs A1, . . . , As, with arc Ai initiating at P and ending on the edge of LPN Bi, (i = 1, . . . , s). Note

118 Compositional specification of SDCPN

that repeated use is made of interconnection mapping type III-A, which is defined from a place to

the edge of an LPN-box.

A version with inhibitor arcs instead of enabling arcs is also defined, which is referred to as

type VI-B. Interconnection mapping type VI can also be defined from a place within an IPN to a

cluster-box of LPNs, by means of an ordinary arc; this type is referred to as type VI-C. Figure 5.10

shows an example of interconnection mapping type VI-A, for s = 2.

LPN A

P

LPN B2

LPN B1

,

LPN A

P

LPN B2

LPN B1

Figure 5.10 LPN interconnection mapping type VI-A; this type makes repeated use of type III-A.

For type VI-B, the enabling arcs are replaced by inhibitor arcs; this type makes repeated use of type

III-B. For type VI-C, the enabling arcs are replaced by ordinary arcs and LPN A is replaced by an

IPN; this type makes repeated use of type V

Interpretation and practical use. This situation occurs where all transitions in several LPNs can

only be enabled if place P of another LPN is current. In such a case these transitions can also make

use of the colour of the token in P . As such, interconnection mapping type VI-A is an extension

of interconnection mapping type III-A. For type VI-B, any of the transitions in several LPNs can

only fire if place P in LPN A is not current. Type VI-B is an extension of type III-B. Similarly, the

use of VI-B with respect to VI-A is mainly practical if LPN A contains more than two places. Type

VI-C is an extension of type V, with the interpretation that the information in the IPN is used by

any of the transitions in the cluster-box, whichever is enabled first.

5.3 Interconnection mapping types 119

LPN interconnection mapping type VII

Definition and example. Consider a set of s LPNs Ai (i = 1, . . . , s) which is enclosed by a

cluster-box, and there is one LPN B (not in the cluster-box) which contains a transition T . Also

consider an enabling arc that initiates at the edge of the cluster-box with the set of LPNs Ai (i =

1, . . . , s) and ends on transition T .

Interconnection mapping type VII means that the enabling arc represents s actual enabling arcs

A1, . . . , As, and that transition T represents s duplications T1, . . . , Ts. Arc Ai initiates at the edge

of LPN Ai and ends on duplication Ti (i = 1, . . . , s). All places in all LPNs Ai should have the

same colour type. Interconnection mapping type VII is not defined with ordinary or inhibitor arcs

instead of enabling arcs. Figure 5.11 shows an example of this interconnection mapping type, for

s = 2.

LPN A2

LPN A1

LPN B

T

,
LPN A2

LPN A1

LPN B

T2T1

Figure 5.11 LPN interconnection mapping type VII; this type makes repeated use of type II

Interpretation and practical use. This is an extension of interconnection mapping type II:

Transition T wants to make use of the colours of the tokens in all LPNs Ai, wherever they reside,

and without consuming these tokens.

5.3.4 Avoid duplication and cluttering within an LPN

Finally, we introduce an additional interconnection mapping type which avoids duplication of

transitions and arcs within an LPN, and consequently cluttering of arcs between LPNs:

120 Compositional specification of SDCPN

LPN interconnection mapping type VIII

Definition and example. Consider an ordinary arc initiating at the edge of an LPN-box and

ending on a transition T inside the same LPN-box.

Interconnection mapping type VIII means that this ordinary arc represents s actual ordinary arcs

A1, . . . , As, and the transition represents s duplications T1, . . . , Ts, where s is the number of places

in the LPN-box. These s places are referred to as P1, . . . , Ps and they all should have the same

colour type. Arc Ai initiates at place Pi and ends at duplicated transition Ti (i = 1, . . . , s).

This interconnection mapping type VIII is not defined for enabling arcs or inhibitor arcs instead

of ordinary arcs. Figure 5.12 illustrates how it avoids both the duplication of transitions and arcs

within an LPN, and the consequential duplication of arcs between LPNs, for s = 3.

LPN C

LPN B

LPN A

T

, LPN C

LPN B

LPN A

Figure 5.12 LPN interconnection mapping type VIII, which avoids duplication of arcs and

transitions within an LPN and duplication of arcs between LPNs

Interpretation and practical use. This situation occurs if a transition T needs access to the token

in its own LPN, wherever it resides.

5.3.5 Combinations of interconnection mapping types

Interconnection mapping types can also be combined, such as

• type II with III-A (i.e., an enabling arc from an LPN-box to another LPN-box),

5.3 Interconnection mapping types 121

• type VII with III-A (an enabling arc from a cluster-box to an LPN-box; this combination

makes repeated use of type II),

• type VI-A with II (an enabling arc from an LPN-box to a cluster-box; this combination makes

repeated use of type III-A), or

• type VII with III-A, VI-A and II (enabling arc from a cluster-box to a cluster-box).

Note that type II could also be combined with type I (i.e., a merging arc from a set of LPN-boxes to

a transition), but since in effect this combination is the same as type VII (i.e., meaning that enabling

arcs are drawn from each LPN-box to duplications of transitions), and since combining type I with

other types appears to pose restrictions on the order in which the interconnection mapping types are

applied, it is omitted as an additional combination. In addition, one could argue about including in

the list the combination of type IV with type V (ordinary arcs from an LPN-box to another LPN-

box via an IPN). Since this really is a sequence of types rather than a new combination, it is also

omitted from the list.

An illustration of combination of II with III-A is given in Figure 5.13.

LPN A LPN B

,

LPN A
LPN B

Figure 5.13 LPN interconnection mapping types II and III-A combined. This situation occurs if

any of the transitions in LPN B needs to make use of the colour of the token in LPN A, wherever

this token resides

Remark 5.3. The interconnection mapping types introduced in this section can also be used for

other types of Petri nets than SDCPN (or DCPN), provided that these other types of Petri nets

support the same graphical elements as SDCPN (or DCPN), such as enabling arcs. If this is not

the case, the interconnection mapping types might be used with ordinary arcs instead of enabling

arcs, but then the restriction that the number of tokens in an LPN cannot be changed by the

interconnections must be removed.

It is also noted that in practice, the use of interconnection mapping types II and VII and their

combinations with other types will mainly be relevant if the Petri net contains distinguishable

(i.e., coloured) tokens, since otherwise there would not be a distinction between the duplicated

122 Compositional specification of SDCPN

transitions. Similarly, interconnection mapping types V and VI are mainly relevant for timed and/or

coloured nets, since the use of IPNs is typical for the transport of information and for modelling a

buffer in which this information can be temporarily stored.

Remark 5.4. It can be noticed from the developments introduced in this section, that the

interconnection mapping types significantly increase the possibilities for drawing arcs between

types of nodes. In an SDCPN, an ordinary arc can be drawn only between a place and a transition

or vice versa; an enabling arc or inhibitor arc can be drawn from a place to a transition only.

The interconnection types allow arcs to be drawn between places, transitions and various types of

boxes. However, there are still a few restrictions.

In order to determine what is allowed and what is not, we made an analysis in which we first

identified the types of nodes available for initiating or ending an arc (i.e., place in an LPN, place

in an IPN, transition in an LPN, transition in an IPN, LPN-box, cluster-box), and next, for each

ordered combination of nodes and for each type of arc available (i.e., ordinary arc, enabling arc,

inhibitor arc, merging arc) we determined if this arc could be drawn between this combination of

nodes according to the interconnection mapping rules defined, including their combinations, and

if additional types should be defined. For this analysis, we used that an arc between two places,

or between two transitions is never allowed, and neither is an enabling arc or inhibitor arc from

a transition or to a place. For all other combinations we analysed if an interconnection mapping

type should be (or could be made) available to provide a formal meaning for this combination. The

analysis is provided in the appendix, Section 5.6. The result of this analysis is incorporated in the

following section.

5.4 Extension of SDCPN with interconnection mapping types I

through VIII

This subsection extends the formal SDCPN definition of Section 4.3 to include the interconnec-

tion mapping types identified in Section 5.3. The extension is referred to as SDCPNimt.

Definition 5.1 (SDCPNimt). An SDCPNimt is a collection of elements (P , T , Bimt, Aimt, Limt,

N imt, S, C, I, V , W , G, D, F) together with five rules R5–R9 which prescribe how the

graphical elements may be connected, and an execution prescription which makes use of a sequence

{Ui; i = 0, 1, . . .} of independent uniform U [0, 1] random variables, of independent sequences of

mutually independent standard Brownian motions {Bi,P
t ; i = 1, 2, . . .} of appropriate dimensions,

one sequence for each place, and of five rules R0–R4 that solve enabling conflicts.

Section 5.4.1 explains the SDCPNimt elements and the rules R5–R9, Section 5.4.2 explains the

5.4 Extension of SDCPN with interconnection mapping types I through VIII 123

execution, Section 5.4.3 discusses the relationship between SDCPNimt and general stochastic hybrid

process (GSHP).

5.4.1 SDCPNimt elements

Elements P , T , S, C, I, V , W , G, D, F are as in the definition of SDCPN (Section 4.3). The

other elements and Rules R5–R9 are outlined below:

Aimt = A ∪Am is the set of arcs in the SDCPNimt. It equals the set of arcs A = Ao ∪ Ae ∪ Ai as

defined for SDCPN (Section 4.3), extended with a set of merging arcs Am.

A merging arc is a set of s ≥ 2 enabling arcs merging into one enabling arc, where s is finite

but can be different for each merging arc. The merging point is denoted by a small black square.

Bimt = BL ∪ BC ∪ BS is a set of boxes which consists of a set BL of LPN-boxes, a set BC of

cluster-boxes, and one element BS which is a box that will be drawn around all elements of

the SDCPNimt except itself.

Each box in Bimt is drawn as a rectangle with rounded corners. Note that at this definition level,

each element of Bimt is just an empty box. The box function Limt (see definition next) will specify

the actual contents (i.e., the places and transitions or other boxes) of each box in Bimt.

Limt : P ∪ T ∪ BL ∪ BC → Bimt is a box function which specifies the contents of each box in

Bimt: Limt maps each place in P to one box in Bimt, each transition in T to one box in Bimt,

and each box in BL to one box in BC∪BS . All cluster-boxes (in BC) are mapped to BS . Places

(and transitions) that form IPNs are not mapped to an LPN-box (in BL) but can be mapped to

a cluster-box (in BC), or else, to BS , and at least two LPN-boxes should be mapped to each

cluster-box. There is no hierarchy of cluster-boxes within cluster-boxes.

Limt maps each element of P ∪ T ∪ BL ∪ BC to the box immediately enclosing it. Hence, for

each LPN-box in BL, the box function specifies which places in P and which transitions in T are

drawn in it to form an LPN; for each cluster-box in BC it specifies which (at least two) LPN-boxes

in BL are drawn in it to form a cluster of LPNs. Some places (and transitions) are not inside any

LPN-box; these form the IPNs. It is, however, possible that IPNs are part of a cluster-box (although

they are not part of an LPN-box), and if not, they are in box BS . Similarly, not all LPN-boxes need

to be inside a cluster-box; those that are not, are assigned to BS . It is noted that BS is usually not

physically drawn. The introduction of this box BS was necessary to be able to map all SDCPNimt

places and transitions to a box, even if they are not part of an LPN-box or cluster-box.

124 Compositional specification of SDCPN

N imt is a node function which maps each arc in Am to an ordered pair of which the first component

is a set of places (but not in IPNs), and the second component is a transition. Furthermore,

N imt maps each arc in A = Ao∪Ae∪Ai, to an ordered pair of nodes, where a node is a place,

a transition, an LPN-box or a cluster-box. Multiple arcs between the same pair of nodes are

allowed (but not both an inhibitor arc and another type of arc). There are five rules R5–R9 to

be adhered to in order to assure unambiguity. These rules have been derived by analysis in

the appendix, Section 5.6.

R5 Ordinary arcs can only be drawn from a place to a transition or vice versa within the same

LPN-box, from a place in an IPN to a transition, from a transition to a place in an IPN,

from a place in an IPN to an LPN-box, from an LPN-box to a place in an IPN, from a

place in an IPN to a cluster-box that does not contain this place, or from an LPN-box to

a transition in the same LPN-box.

R6 Enabling arcs can only be drawn from any place to any transition, from a place in an

LPN to another LPN-box or to a cluster-box that does not contain the place’s LPN,

from an LPN-box to a transition in another LPN, from a cluster-box to a transition in an

LPN that is not in this cluster-box, or between two boxes (i.e., LPN-LPN, LPN-cluster,

cluster-LPN or cluster-cluster), provided the LPN at one end of the arc is not in the

cluster at the other end of the arc.

R7 Inhibitor arcs can only be drawn from any place to any transition, or from a place in an

LPN to an LPN-box or cluster-box. If two nodes are already connected to each other by

an inhibitor arc, they cannot also be connected (in the same direction) by another arc.

R8 Merging arcs can only be drawn from a set of places (but not in IPNs) to a transition that

is in another LPN than these places.

R9 If an arc initiates at a set of places (as in case of merging arc), or at the edge of an LPN-

box or cluster-box that contains multiple places, then all these places should have the

same colour type as specified by C.

5.4.2 SDCPNimt execution

The execution of an SDCPNimt satisfies the execution rules as described in Section 4.3, including

the rules R0–R4, once the SDCPNimt has been uniquely transformed to an SDCPN according to the

interconnection mapping types defined in Section 5.3. However, in most cases, one will want to

avoid having to perform this transformation, since it will require having to draw a cluttered Petri

net graph. Therefore, this section also derives the execution rules for the situation in which the

interconnection mapping types have been used.

5.4 Extension of SDCPN with interconnection mapping types I through VIII 125

Since the number of places and the token colour functions are not affected by the interconnec-

tion mapping types, the execution of the SDCPNimt is exactly the same as for SDCPN as long as

the tokens stay in their current place: the colour of a token while residing in a place P evolves

according to a stochastic differential equation that is governed by the colour functions VP (for the

drift coefficient) and WP (for the diffusion coefficient).

For a transition to be allowed to remove and produce tokens, it first has to be pre-enabled

(i.e., have a token in each of its input places), and next its guard or delay condition (if applicable)

needs to hold true. This is similar to the situation in SDPCN; however, due to the use of the

interconnection mapping types, some transitions actually represent several duplications, and the

SDCPNimt graph may not always give direct insight into whether a transition is pre-enabled, and by

which combination of token colours. Therefore, rules are given next to provide this insight.

Note that the input tokens of a transition can be of two kinds: ‘local input tokens’, i.e., residing

in places that are within the same LPN the transition makes part of, and ‘external input tokens’,

i.e., residing in places that are outside the LPN the transition makes part of. Both kinds of tokens

determine whether and when a transition is enabled. However, below, to keep the description brief,

only the external input tokens are considered.

• Transition has incoming ordinary and/or enabling and/or inhibitor arcs that are

connected to places only.

Pre-enabling and enabling is according to the ‘normal’ SDCPN rules.

• Transition has an incoming merging arc (see interconnection mapping type I).

Transition is pre-enabled if it has a token in at least one of the places connected to this

merging arc.

Transition is enabled if it is enabled by this input token according to the rules as described for

SDCPN (e.g., its guard evaluates to true, or its delay has passed). If there are several tokens

in these connected places, the transition guard or delay function uses their colours in parallel

for its evaluation. By rule R9, all connected places have the same colour type.

• Transition has an (enabling) incoming arc that is connected with an LPN-box (see

interconnection mapping type II).

Transition is pre-enabled if there is at least one token somewhere in this input LPN-box (and

this is usually the case).

Transition is enabled if it is enabled by this input token as described for SDCPN. If there are

several tokens in the input LPN-box, the transition guard or delay function uses their colours

in parallel for its evaluation. By rule R9, all these input tokens have the same colour type.

• Transition has an (enabling) incoming arc that is connected with a cluster-box (see

interconnection mapping type VII).

126 Compositional specification of SDCPN

Transition is pre-enabled if there is at least one token somewhere in this input cluster-box

(and this is usually the case).

Transition is enabled if it is enabled by this input token as described for SDCPN. If there

are several tokens in the input cluster-box, the transition guard or delay function uses their

colours in parallel for its evaluation. By rule R9, all these input tokens have the same colour

type.

• Transition has an (ordinary) incoming arc that is connected with the LPN-box the

transition makes part of itself (see interconnection mapping type VIII).

Transition is pre-enabled if there is at least one token somewhere in this LPN-box (and this

is usually the case).

Transition is enabled if it is enabled by this input token as described for SDCPN. If there are

several tokens in the LPN-box, the transition guard or delay function uses their colours in

parallel for its evaluation. By rule R9, all these input tokens have the same colour type.

• Transition makes part of an LPN-box or of a cluster-box that has an input place by

means of an enabling arc (see interconnection mapping type III-A or VI-A).

Transition is pre-enabled if there is a token in this input place.

Transition is enabled if it is enabled by this input token as described for SDCPN. If there are

several tokens in the input place, the transition guard or delay function uses their colours in

parallel for its evaluation.

• Transition makes part of an LPN-box or of a cluster-box that has an input place by

means of an inhibitor arc (see interconnection mapping type III-B or VI-B).

Transition is pre-enabled if there is no token in this input place.

Enabling of the transition is not further affected by external interconnections.

• Transition makes part of an LPN-box or of a cluster-box that has an input place that is

in an IPN (see interconnection mapping type V or VI-C).

Transition is pre-enabled if there is a token in this input place.

Transition is enabled if it is enabled by this input token as described for SDCPN. If there are

several tokens in the input place, the transition guard or delay function uses their colours in

parallel for its evaluation.

• Transition makes part of an LPN-box or of a cluster-box that has an input LPN-box (see

interconnection mapping type III-A combined with II, or type VI-A (making repeated

use of III-A) combined with II)

Transition is pre-enabled if there is at least one token somewhere in the input LPN-box (and

this is usually the case).

5.4 Extension of SDCPN with interconnection mapping types I through VIII 127

Transition is enabled if it is enabled by this input token as described for SDCPN. If there are

several tokens in the input LPN-box, the transition guard or delay function uses their colours

in parallel for its evaluation. By rule R9, all these input tokens have the same colour type.

• Transition makes part of an LPN-box or of a cluster-box that has an input cluster-box

(see interconnection mapping type VII (making repeated use of II) combined with III-A,

or see type VI-A combined with III-A, II and VII)

Transition is pre-enabled if there is at least one token somewhere in the input cluster-box (and

this is usually the case).

Transition is enabled if it is enabled by this input token as described for SDCPN. If there

are several tokens in the input cluster-box, the transition guard or delay function uses their

colours in parallel for its evaluation. By rule R9, all these input tokens have the same colour

type.

When a transition is enabled, it produces output as determined by its firing measure F . Since

the set of output places of a transition is clear from the SDCPNimt graph, even if the transition

actually represents a number of duplications, this output can be determined following the SDCPN

rules. A possible exception is the case where interconnection mapping type IV is applied, in which

an ordinary arc from an LPN-box to a place in an IPN represents s actual ordinary arcs A1, . . . , As,

where s is the number of transitions in the LPN-box; these transitions are referred to as T1, . . . , Ts.

Although in the SDCPN graph version, there is an arc Ai from Ti to P , in the SDCPNimt graph,

there is no arc from Ti to P ; there is only an arc from the edge of Ti’s LPN-box to P . This means

that each transition in the LPN has an additional output place which is not directly visible from

the SDCPNimt graph, but which may expect output from the transition’s firing measure. Hence,

interconnection mapping type IV deserves special consideration in this respect. In cases where

problems can be expected, it is recommended to not use interconnection mapping type IV.

5.4.3 Relation between SDCPNimt and GSHP

In this section we showed that SDCPNimt is an extension of SDCPN, by the inclusion of an

additional arc type (merging arc), by the inclusion of different types of boxes that surround sets

of places and transitions or other boxes, and by the inclusion of a set of rules R5–R9 that allow

arcs also to be drawn from or to the edges of these boxes. More specifically, an SDCPNimt reduces

to an SDCPN if Am = ∅ (hence there are no merging arcs) and Bimt = ∅ (hence there are no

LPN-boxes or cluster-boxes). With this, an SDCPN is a special case of an SDCPNimt and thus there

exists an into-mapping from the set of SDCPN to the set of SDCPNimt. Through the unambiguous

definitions of the interconnection mapping types in Section 5.3 and the rules R5 through R9 in

Subsection 5.4.1, each given SDCPNimt can also be uniquely transformed to an SDCPN. This is

128 Compositional specification of SDCPN

done by applying the transformation rules of Section 5.3 to each occurrence of interconnection

mapping types use. Since each interconnection mapping type has a unique definition, which is in

terms of SDCPN rules, the resulting SDCPN is unique and according to the definition of SDCPN.

In Chapter 4 it was proven that, under a few conditions, an SDCPN is probabilistically

equivalent to a particular powerful class of stochastic hybrid process, named general stochastic

hybrid process (GSHP). Section 4.7 provided a discussion on the conditions. Since each SDCPNimt

can be uniquely transformed to an SDCPN, the equivalence between SDCPNimt and GSHP also

exists, and if the conditions hold true for SDCPN, they will also hold true for SDCPNimt.

5.5 Concluding remarks

For the compositional specification of a multi-agent hybrid system this chapter has introduced a

hierarchical extension of the compositional specification power of Petri nets, which avoids the need

for all kinds of low-level changes once making connections at a higher model level. Moreover, the

problem of combinatorial growth of the number of interconnections with the size of the Petri net is

remedied. The usage of the interconnection mapping types improves simplicity and readability. In

addition, once the interpretation and practical use of the interconnection mapping types have been

mastered, their use improves resilience against modelling errors. In Chapter 6, the effectiveness of

the SDCPN-based compositional specification is illustrated for an air transport example.

The extension with interconnection mapping types further increases the modelling power of

SDCPN, while maintaining the SDCPN analysis properties. A key property of SDCPN is the

existence of equivalence relations with GSHP. This implies that the compositional modelling power

of SDCPNimt is combined with the stochastic analysis power of GSHP.

5.6 Appendix: Analysis of interconnection mapping types al-

lowed

This appendix systematically analyses which arcs can be used to connect which SDCPNimt

nodes. The objective is to ensure that all defined interconnection mapping types make sense and

that no important types are forgotten.

Tables 5.1 and 5.2 summarise the interconnection mapping types and their possible com-

binations, give brief descriptions, and analyse if the same interconnection mapping type may

also be introduced with other types of arcs (e.g., inhibitor instead of enabling arc). Tables 5.3

and 5.4 address the analysis problem from an arcs perspective by systematically considering all

combinations of SDCPNimt nodes and analysing which types of arcs can be used to connect these

5.6 Appendix: Analysis of interconnection mapping types allowed 129

combinations.

The codes used in these tables, i.e., (*), (**), (1), (2), . . . , are explained below:

* These combinations are not allowed due to basic Petri net rules: no arcs allowed from place to

place; no arcs allowed from transition to transition; no enabling or inhibitor arcs allowed

leaving a transition and/or ending at a place.

** These combinations are not logical or compatible, e.g., arc from place in IPN to transition in

same LPN.

(1) These combinations draw an arc A from a place P to the edge of an LPN-box that the

place makes part of. One could imagine a meaning to this combination, being that this arc

represents s arcs A1, . . . , As, where s is the number of transitions also existing in the LPN-

box, and where for i = 1, . . . , s, arc Ai is drawn from P to Ti. This would mean that each

transition inside the LPN-box would have place P as input place. In case A is an ordinary

arc, the token in P would be consumed upon firing of any enabled transition. In case A is

an enabling arc, any transition would have constant access to the colour information of the

token in place P . In case A is an inhibitor arc, no transition could be enabled as long as place

P contains a token.

These combinations could be interesting to include by means of an additional interconnection

mapping type. However, if the number of transitions inside the LPN-box is limited, the

added value is also limited: the use of the interconnection mapping type would only lead to

reduction of a few arcs within an LPN, there is no reduction in the interconnections between

LPNs. The effort of having to additionally ‘master’ the meaning of this interconnection

mapping type does not weigh up to the positive effects. Therefore, for the time being, these

combinations are not included as a formal interconnection mapping type shorthand.

(2) These combinations draw an arc A between a place P in an LPN or in an IPN to the edge of

a cluster-box the place makes part of. One could imagine a meaning to this combination,

similar to the one for item (1), being that this arc represents s arcs A1, . . . , As, where s is the

number of transitions also existing in the cluster-box, and where for i = 1, . . . , s, arc Ai is

drawn from P to Ti. This would mean that each transition inside the cluster-box would have

place P as input place.

These combinations could also be interesting to include by means of an additional intercon-

nection mapping type. However, the connection from a place in an LPN to the edge of a

cluster-box by means of any type of arc would require this arc to cross the edge of the LPN-

box the place makes part of, which would probably reduce readability rather than increase

it. The added value of the connection from a place in an IPN to the edge of a cluster-box

is limited since it is similar to connections from this place to the edges of each LPN within

130 Compositional specification of SDCPN

the same cluster-box. Since the number of LPNs within a cluster-box is usually limited, the

reduction in number of arcs is marginal with such interconnection mapping type. Therefore,

for the time being, these combinations are not included as a formal interconnection mapping

type.

(3) These combinations draw an ordinary arc from a transition T in an IPN or LPN to the edge

of an LPN-box or cluster-box. One could imagine a meaning to this combination, being that

this arc represents s ordinary arcs A1, . . . , As, where s is the number of places existing in

the LPN-box or cluster-box, and where for i = 1, . . . , s, arc Ai is drawn from T to Pi. This

would mean that T may possibly fire tokens to all these places. Due to the restriction that the

number of tokens in an LPN should not be affected by interconnections, these combinations

between T and the edge of a box that T does not make part of cannot be allowed. This leaves

the case where an ordinary arc is drawn from a transition to the edge of the LPN that the

transition makes part of. For reasons similar to those provided at item (1), the added value of

defining an interconnection mapping type for this is limited. Therefore, for the time being,

these combinations are not included as a formal interconnection mapping type.

(4) These combinations draw an arc A from the edge of an LPN-box to a place P inside the same

LPN-box. One could imagine a meaning to this combination, being that this arc represents

s arcs A1, . . . , As, where s is the number of transitions Ti also existing in the LPN-box, and

where for i = 1, . . . , s, arc Ai is drawn from Ti to P . This means that each transition in

the LPN, upon firing, may produce a token for P . For reasons similar to those provided

at item (1), the added value of defining an interconnection mapping type for this is limited.

Therefore, for the time being, these combinations are not included as a formal interconnection

mapping type.

(5) These combinations draw an ordinary arc from an LPN-box or a cluster-box to a place P in

another LPN. The meaning of this combination would be that each transition in the LPN-box

or cluster-box that is at the beginning of the arc, upon firing may produce a token for P . This

would affect the number of tokens in this place due to interconnections, hence will not be

allowed.

(6) These combinations draw an arc from the edge of an LPN-box or a cluster-box to a transition

T in an IPN. One could imagine a meaning to this combination, being that this arc represents

s arcs A1, . . . , As, where s is the number of places existing in the LPN-box or cluster-box,

and where for i = 1, . . . , s, Ti is duplication of T , and arc Ai is drawn from Pi to Ti.

Due to IPN rules, such arcs cannot be ordinary arcs, hence the possibility for enabling or

inhibitor arcs remains. This situation could be seen as a special case of interconnection

5.6 Appendix: Analysis of interconnection mapping types allowed 131

mapping type II, except that here the transition at the end of the arc is in an IPN rather than

an LPN. It would require transitions to be duplicated inside an IPN, and such IPN, or at least

part of it containing the transition, would practically have become an LPN. Therefore, for the

time being, this combination is not included as a formal interconnection mapping type.

(7) These combinations draw an arc from the edge of an LPN-box to itself or from the edge of a

cluster-box to itself. No added value could be identified from this.

(8) These combinations draw an arc from the edge of an LPN-box to the cluster-box surrounding

the LPN-box, or vice versa. No added value could be identified from this.

(9) This combination draws an ordinary arc from the edge of a cluster-box to a place that makes part

of an LPN inside the same cluster-box. This is similar to item (4), except that in this case,

ordinary arcs are drawn from all transitions in the cluster-box to the place. For transitions

that are inside the same LPN-box as the place, this is equal to the situation of item (4), and

for transitions that are outside the LPN-box (but inside the cluster), this situation cannot be

allowed since the number of tokens would be changed due to interconnections. Therefore, for

the time being, this combination is not included as a formal interconnection mapping type.

(10) This combination draws an ordinary arc from a cluster-box to a place in an IPN. This IPN

can be located either inside the same cluster-box or outside it. One could imagine a meaning

to this combination, which could be seen as an extension of interconnection mapping type

IV, being that this arc represents s ordinary arcs A1, . . . , As, where s is the number of LPNs

inside the cluster-box, and where for i = 1, . . . , s, arc Ai is drawn from LPNi to P . Such

interconnection mapping type would then make repeated use of type IV.

Since the number of LPNs inside a cluster-box is usually limited, the added value of this new

type is limited. Therefore, for the time being, this combination is not included as a formal

interconnection mapping type.

(11) This combination draws an arc from the edge of a cluster-box to a transition T that makes part

of an LPN inside the same cluster-box. This could be seen as an extension of interconnection

mapping type VIII, which draws an arc from an LPN-box to a transition inside the same

box. The meaning of this new combination would be that if the cluster-box contains s

places P1, . . . , Ps, the arc A represents s actual arcs A1, . . . , As and for i = 1, . . . , s, arc

Ai connects Pi to duplicated transition Ti. For the case where A is an ordinary arc and

where the places Pi are not in the same LPN as Ti, this would lead to the number of tokens

affected by interconnections, which is not allowed. For places Pi inside the same LPN as

Ti, the situation is reduced to type VIII, which is not defined for enabling or inhibitor arcs.

132 Compositional specification of SDCPN

Therefore, for the time being, this combination is not included as a formal interconnection

mapping type.

(12) A merging arc is only defined from a set of places to a transition that is in another LPN than

these places. Many variations of this type could be imagined, e.g., from a set of places to a

transition in the same LPN, or to a transition in an IPN, or to an LPN-box or cluster-box. In

addition, merging arcs could initiate at a set of transitions instead of a set of places, at a set

of boxes instead of places, or even at a mix of places and boxes.

In Section 5.3.5 it was argued that a merging arc version that starts at a set of LPN-boxes and

ends on a transition is in effect similar to an enabling arc from a cluster-box holding these

LPNs, to the transition, which is imt VII. Moreover, combining a merging arc with other

types of imt appears to pose restrictions on the order in which the imt’s are applied: imt I

can be used only after all other imt’s have been used to obtain an SDCPNimt graph, and if

the SDCPNimt graph is transformed to an SDCPN graph, imt I needs to be applied first. This

will also hold if there is a mix of places and LPNs at the beginning of the merging arc. An

enabling arc cannot start at a transition, so if the merging arc starts at a set of transitions, it

should become a merging arc of ordinary arcs, and it should end at a place in an IPN. The

meaning of this would be that the merging arc from s transitions to a particular place would

simply replace s ordinary arcs. No transitions are duplicated in this situation, hence there is

no real reduction of cluttering. Therefore, for the time being, other combinations for merging

arcs are not included as a formal interconnection mapping type.

From Tables 5.3 and 5.4, SDCPNimt rules R5 through R8 in Section 5.4.1 can be easily derived:

For Rule R5, which specifies the nodes between which ordinary arcs can be drawn, look up the

rows that have ‘ordinary’ in the first column, and gather all column headings that give ‘yes’. For

rule R6 (enabling arcs), rule R7 (inhibitor arcs) and rule R8 (merging arcs), a similar procedure can

be followed.

Rule R9 can be derived from the second column in Tables 5.1 and 5.2. Here, one may see

that for each use of interconnection mapping types, all places that are at the beginning of the arc

(including the places that are inside a box that is at the beginning of the arc) are required to be of

the same colour type. If this set of places contains only one element, the requirement holds true

automatically and is not explicitly posed. The reason for inclusion of this restriction is that the

guard or delay function of a transition that is at the end of the arc (sometimes indirectly as part of

a box) uses the colours of the input tokens, hence implicitly expects these token colours to be of a

particular type. If the transition is replaced by a number of duplications, then each duplication gets

the same guard or delay function (if applicable), hence will expect the same type of input token

colours.

5.6 Appendix: Analysis of interconnection mapping types allowed 133

Table 5.1 Summary of interconnection mapping types (imt) and their combinations. Last column

motivates whether some imt’s may also be defined for other types of arcs

imt Shorthand notation Meaning Remarks

I Merging arc initiating at set of

places P1, . . . , Pm, ending at

transition T in other LPN; for

all k, ℓ: C(Pk) = C(Pℓ)

For i = 1, . . . ,m, N (Ai) =
(Pi, Ti), with Ai enabling arc

and Ti duplication of T

Not defined for ordinary arc (since

then # tokens affected by intercon-

nections) or inhibitor arc (the merg-

ing arc construction is mainly used

to model an or relation, which is not

practically applicable for inhibitor

arcs)

II Enabling arc from LPN-

box that contains places

P1, . . . , Pm to transition T
in other LPN; for all k, ℓ:
C(Pk) = C(Pℓ)

For i = 1, . . . ,m, N (Ai) =
(Pi, Ti), with Ai enabling arc

and Ti duplication of T

Not defined for ordinary arc (since

then # tokens affected by intercon-

nections) or inhibitor arc (imt II

mainly used for token colour access)

III-A Enabling arc from place P to

LPN-box that contains transi-

tions T1, . . . , Tn

For i = 1, . . . , n, N (Ai) =
(P, Ti), with Ai enabling arc

Not defined for ordinary arc (since

then # tokens affected by intercon-

nections) but is defined for inhibitor

arcs, see imt III-B

III-B Inhibitor arc from place P to

LPN-box that contains transi-

tions T1, . . . , Tn

For i = 1, . . . , n, N (Ai) =
(P, Ti), with Ai inhibitor arc

See at imt III-A

IV Ordinary arc from LPN-box

that contains transitions

T1, . . . , Tn to place P in IPN

For i = 1, . . . , n, N (Ai) =
(Ti, P), with Ai ordinary arc

Not defined for enabling or inhibitor

arcs since these arcs are not allowed

from transition to place

V Ordinary arc from place P in

IPN to LPN-box that contains

transitions T1, . . . , Tn

For i = 1, . . . , n, N (Ai) =
(P, Ti), with Ai ordinary arc

Not defined for enabling arc (since

then the IPN will overflow and the

whole reason of using IPN rather

than LPN makes no sense) or in-

hibitor arcs (ditto)

VI-A Enabling arc from place P in

LPN to cluster-box that con-

tains LPNs L1, . . . , Ls, where

Lj contains nj transitions

For i = 1, . . . ,
∑s

j=1
nj ,

N (Ai) = (P, Ti), with Ai

enabling arc and
∑s

j=1
nj the

number of transitions in the

cluster

Not defined for ordinary arcs, except

if P is in an IPN, see imt VI-C. This

imt VI-A is extension of imt III-A (so

is similarly applicable for inhibitor

arcs, see imt VI-B)

VI-B Inhibitor arc from place P in

LPN to cluster-box that con-

tains LPNs L1, . . . , Ls, where

Lj contains nj transitions

For i = 1, . . . ,
∑s

j=1
nj ,

N (Ai) = (P, Ti), with Ai

inhibitor arc and
∑s

j=1
nj the

number of transitions in the

cluster

See at imt VI-A

VI-C Ordinary arc from place P in

IPN to cluster-box that con-

tains LPNs L1, . . . , Ls, where

Lj contains nj transitions

For i = 1, . . . ,
∑s

j=1
nj ,

N (Ai) = (P, Ti), with Ai

ordinary arc and
∑s

j=1
nj the

number of transitions in the

cluster

This imt VI-C is extension of imt

V (so not applicable for enabling or

inhibitor arcs)

134 Compositional specification of SDCPN

Table 5.2 Summary of interconnection mapping types and combinations, cont.

imt Shorthand notation Meaning Remarks

VII Enabling arc from cluster-box

that contains LPNs L1, . . . , Ls to

transition T in LPN L, where Lj

contains mj places. If places in

the cluster are P1, . . . , P∑
s
j=1

mj

then for all k, ℓ: C(Pk) = C(Pℓ)

For i = 1, . . . ,
∑s

j=1
mj ,

N (Ai) = (Pi, Ti), with Ai

enabling arc and Ti duplica-

tion of T

Extension of imt II, so not defined

for ordinary or inhibitor arcs

VIII Ordinary arc from LPN-box that

contains places P1, . . . , Pm to a

transition inside this same LPN-

box; for all k, ℓ: C(Pk) = C(Pℓ)

For i = 1, . . . ,m, N (Ai) =
(Pi, Ti), with Ai ordinary arc

and Ti duplication of T

Not defined for enabling arcs

(since then possibly the LPN will

overflow with tokens) or inhibitor

arcs (since this makes no sense)

II +

III-A

Enabling arc from LPN-box that

contains places P1, . . . , Pm to

LPN-box that contains transitions

T1, . . . , Tn; for all k, ℓ: C(Pk) =
C(Pℓ)

For i = 1, . . . ,m and

j = 1, . . . , n, N (Aij) =
(Pi, Tji), with Aij enabling

arc and Tji duplication of Tj

Not defined for ordinary or in-

hibitor arcs since these are not

allowed for imt II

VI-A

+ II (+

III-A)

Enabling arc from LPN-box that

contains places P1, . . . , Pm to

cluster-box that contains transi-

tions T1, . . . , Tn (organised in

different LPNs); for all k, ℓ:
C(Pk) = C(Pℓ)

For i = 1, . . . ,m and

j = 1, . . . , n, N (Aij) =
(Pi, Tji), with Aij enabling

arc and Tji duplication of Tj

Not defined for ordinary or in-

hibitor arcs since these are not

allowed for imt II. Note that the

‘meaning’ of imt VI-A uses imt

III-A multiple times. Therefore,

this could also be seen as a

combination of imt VI-A and II

and III-A

VII +

III-A

(+ II)

Enabling arc from cluster-box

that contains places P1, . . . , Pm

(organised in different LPNs) to

LPN-box that contains transitions

T1, . . . , Tn; for all k, ℓ: C(Pk) =
C(Pℓ)

For i = 1, . . . ,m and

j = 1, . . . , n, N (Aij) =
(Pi, Tji), with Aij enabling

arc and Tji duplication of Tj

Not defined for ordinary or in-

hibitor arcs since these are not

allowed for imt VII. Note that

the ‘meaning’ of imt VII uses

imt II multiple times. Therefore,

this could also be seen as a

combination of imt VII and II and

III-A

VI + II

+ VII

+

III-A

Enabling arc from cluster-box

that contains places P1, . . . , Pm

(organised in different LPNs) to

cluster-box that contains transi-

tions T1, . . . , Tn (organised in

different LPNs); for all k, ℓ:
C(Pk) = C(Pℓ)

For i = 1, . . . ,m and

j = 1, . . . , n, N (Aij) =
(Pi, Tji), with Aij enabling

arc and Tji duplication of Tj

Not defined for ordinary or in-

hibitor arcs since these are not

allowed for imt VII or imt II

5.6 Appendix: Analysis of interconnection mapping types allowed 135

Table 5.3 Evaluation of whether different types of arcs are allowed to be drawn between different

combinations of nodes

A
rc

T
o

→
F

ro
m

↓
P

la
ce

in
sa

m
e

L
P

N

P
la

ce
in

(o
th

er
)

L
P

N

P
la

ce

in
sa

m
e

IP
N

P
la

ce
in

(o
th

er
)

IP
N

T
ra

n
s

in
sa

m
e

L
P

N

T
ra

n
s

in

(o
th

er
)

L
P

N

T
ra

n
s

in

sa
m

e
IP

N

T
ra

n
s

in

(o
th

er
)

IP
N

S
am

e

L
P

N
-

b
o
x

(O
th

er
)

L
P

N
-

b
o
x

S
am

e

C
lu

st
er

-

b
o
x

(O
th

er
)

C
lu

st
er

-b
o
x

o
rd

in
ar

y
P

la
ce

in

L
P

N

N
o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
Y

es
:

b
as

ic
P

N

ru
le

N
o
:

af
-

fe
ct

s
#

to
-

k
en

s

N
o
:

*
*

N
o
:

af
fe

ct
s

#

to
k
en

s

N
o
:

(1
)

N
o
:

im
t

II
I

n
o
t

d
ef

fo
r

o
rd

in
ar

y,
se

e

T
ab

le
5
.1

N
o
:

(2
)

N
o
:

im
t

V
I

n
o
t

d
ef

fo
r

o
rd

in
ar

y,
se

e

T
ab

le
5
.1

en
ab

li
n
g

P
la

ce
in

L
P

N

N
o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
Y

es
:

b
as

ic
P

N

ru
le

Y
es

:
L

P
N

in
te

rc
o
n
n

ru
le

N
o
:

*
*

Y
es

:
IP

N

ru
le

N
o
:

(1
)

Y
es

:
im

t
II

I-
A

N
o
:

(2
)

Y
es

:
im

t
V

I-
A

in
h
ib

it
o
r

P
la

ce
in

L
P

N

N
o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
Y

es
:

b
as

ic
P

N

ru
le

Y
es

:
L

P
N

in
te

rc
o
n
n

ru
le

N
o
:

*
*

Y
es

:
IP

N

ru
le

N
o
:

(1
)

Y
es

:
im

t
II

I-
B

N
o
:

(2
)

Y
es

:
im

t
V

I-
B

o
rd

in
ar

y
P

la
ce

in

IP
N

N
o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*
*

Y
es

:
IP

N

ru
le

Y
es

:

b
as

ic
P

N

ru
le

Y
es

:
b
as

ic

P
N

ru
le

(I
P

N
s

m
er

g
e)

N
o
:

*
*

Y
es

:
im

t
V

N
o
:

(2
)

Y
es

:
im

t
V

I-
C

en
ab

li
n
g

P
la

ce
in

IP
N

N
o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*
*

Y
es

:
IP

N

ru
le

Y
es

:

b
as

ic
P

N

ru
le

Y
es

:
IP

N

ru
le

N
o
:

*
*

N
o
:

im
t

V

n
o
t

d
ef

fo
r

en
ab

li
n
g
,

se
e

T
ab

le
5
.1

N
o
:

(2
)

N
o
:

im
t

V
I-

C
n
o
t

d
ef

fo
r

en
ab

li
n
g
,

se
e

T
ab

le
5
.1

in
h
ib

it
o
r

P
la

ce
in

IP
N

N
o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*
*

Y
es

:
IP

N

ru
le

Y
es

:

b
as

ic
P

N

ru
le

Y
es

:
IP

N

ru
le

N
o
:

*
*

N
o
:

im
t

V

n
o
t

d
ef

fo
r

in
h
ib

it
o
r,

se
e

T
ab

le
5
.1

N
o
:

(2
)

N
o
:

im
t

V
I-

C
n
o
t

d
ef

fo
r

in
h
ib

it
o
r,

se
e

T
ab

le
5
.1

o
rd

in
ar

y
T

ra
n
si

ti
o
n

in
L

P
N

Y
es

:

b
as

ic

P
N

ru
le

N
o
:

af
-

fe
ct

s
#

to
k
en

s

N
o
:

*
*

Y
es

:

IP
N

ru
le

N
o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

(3
)

N
o
:

(3
)

N
o
:

(3
)

N
o
:

(3
)

en
ab

li
n
g

T
ra

n
si

ti
o
n

in
L

P
N

N
o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*
N

o
:

*

in
h
ib

it
o
r

T
ra

n
si

ti
o
n

in
L

P
N

N
o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*
N

o
:

*

o
rd

in
ar

y
T

ra
n
si

ti
o
n

in
IP

N

N
o
:

*

an
d

*
*

N
o
:

af
-

fe
ct

s
#

to
k
en

s

Y
es

:

b
as

ic

P
N

ru
le

Y
es

:

b
as

ic

P
N

ru
le

(I
P

N
s

m
er

g
e)

N
o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*
*

N
o
:

(3
)

N
o
:

(3
)

N
o
:

(3
)

en
ab

li
n
g

T
ra

n
si

ti
o
n

in
IP

N

N
o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*

in
h
ib

it
o
r

T
ra

n
si

ti
o
n

in
IP

N

N
o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

*
N

o
:

*

136 Compositional specification of SDCPN

Table 5.4 Evaluation of whether different types of arcs are allowed to be drawn between different

combinations of nodes, cont.

A
rc

T
o

→
F

ro
m

↓
P

la
ce

in
sa

m
e

L
P

N

P
la

ce
in

(o
th

er
)

L
P

N

P
la

ce

in
sa

m
e

IP
N

P
la

ce
in

(o
th

er
)

IP
N

T
ra

n
s

in
sa

m
e

L
P

N

T
ra

n
s

in

(o
th

er
)

L
P

N

T
ra

n
s

in

sa
m

e
IP

N

T
ra

n
s

in

(o
th

er
)

IP
N

S
am

e

L
P

N
-

b
o
x

(O
th

er
)

L
P

N
-

b
o
x

S
am

e

C
lu

st
er

-

b
o
x

(O
th

er
)

C
lu

st
er

-b
o
x

o
rd

in
ar

y
L

P
N

-b
o
x

N
o
:

(4
)

N
o
:

(5
)

N
o
:

*
*

Y
es

:

im
t

IV

Y
es

:
im

t

V
II

I

N
o
:

im
t

II
n
o
t

d
ef

fo
r

o
rd

i-

n
ar

y,
se

e

T
ab

le
5
.1

N
o
:

*
*

N
o
:

(6
)

N
o
:

(7
)

N
o
:

im
t

II
+

II
I

n
o
t

d
ef

fo
r

o
rd

in
ar

y,
se

e

T
ab

le
5
.2

N
o
:

(8
)

N
o
:

im
t

V
I+

II

n
o
t

d
ef

fo
r

o
rd

in
ar

y,
se

e

T
ab

le
5
.2

en
ab

li
n
g

L
P

N
-b

o
x

N
o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

im
t

V
II

I

n
o
t

d
ef

fo
r

en
-

ab
li

n
g
,

se
e

T
ab

le

5
.2

Y
es

:
im

t

II

N
o
:

*
*

N
o
:

(6
)

N
o
:

(7
)

Y
es

:
im

t

II
+

II
I-

A

N
o
:

(8
)

Y
es

:
im

t
V

I-

A
+

II

in
h
ib

it
o
r

L
P

N
-b

o
x

N
o
:

*
N

o
:

*
N

o
:

*

an
d

*
*

N
o
:

*
N

o
:

im
t

V
II

I

n
o
t

d
ef

fo
r

in
-

h
ib

it
o
r,

se
e

T
ab

le

5
.2

N
o
:

im
t

II
n
o
t

d
ef

fo
r

in
h
ib

it
o
r,

se
e

T
ab

le

5
.1

N
o
:

*
*

N
o
:

(6
)

N
o
:

(7
)

N
o
:

im
t

II
+

II
I

n
o
t

d
ef

fo
r

in
h
ib

it
o
r,

se
e

T
ab

le
5
.2

N
o
:

(8
)

N
o
:

im
t

V
I+

II

n
o
t

d
ef

fo
r

in
h
ib

it
o
r,

se
e

T
ab

le
5
.2

o
rd

in
ar

y
C

lu
st

er
-

b
o
x

N
o
:

(9
)

N
o
:

(5
)

N
o
:

(1
0
)

N
o
:

(1
0
)

N
o
:

(1
1
)

N
o
:

im
t

V
II

n
o
t

d
ef

fo
r

o
rd

in
ar

y,

se
e

T
ab

le

5
.2

N
o
:

(6
)

N
o
:

IP
N

ru
le

N
o
:

(8
)

N
o
:

im
t

V
II

+
II

I

n
o
t

d
ef

fo
r

o
rd

in
ar

y,
se

e

T
ab

le
5
.2

N
o
:

(7
)

N
o
:

im
t

V
I

+
II

I
+

V
II

+

II
n
o
t

d
ef

fo
r

o
rd

in
ar

y,
se

e

T
ab

le
5
.2

en
ab

li
n
g

C
lu

st
er

-

b
o
x

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*
N

o
:

(1
1
)

Y
es

:
im

t

V
II

N
o
:

(6
)

N
o
:

(6
)

N
o
:

(8
)

Y
es

:
im

t

V
II

+
II

I-
A

N
o
:

(7
)

Y
es

:
im

t

V
I-

A
+

II
I+

V
II

+
II

in
h
ib

it
o
r

C
lu

st
er

-

b
o
x

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*
N

o
:

(1
1
)

N
o
:

im
t

V
II

n
o
t

d
ef

fo
r

in
h
ib

it
o
r,

se
e

T
ab

le

5
.2

N
o
:

(6
)

N
o
:

(6
)

N
o
:

(8
)

N
o
:

im
t

V
II

+
II

I

n
o
t

d
ef

fo
r

in
h
ib

it
o
r,

se
e

T
ab

le
5
.2

N
o
:

(7
)

N
o
:

im
t

V
I+

II
I+

V
II

+
II

n
o
t

d
ef

fo
r

in
h
ib

it
o
r,

se
e

T
ab

le
5
.2

m
er

g
in

g
S

et
o
f

p
la

ce
s

(s
ee

al
so

(1
2
))

N
o
:

*
N

o
:

*
N

o
:

*
N

o
:

*
N

o
:

(1
2
)

Y
es

:
im

t
I

N
o
:

(1
2
)

N
o
:

IP
N

ru
le

N
o
:

(1
2
)

N
o
:

(1
2
)

N
o
:

(1
2
)

N
o
:

(1
2
)

Chapter 6

Analysis of DCPN and SDCPN

Since their initiation at the National Aerospace Laboratory NLR1, DCPN, SDCPN and

SDCPNimt have been further developed and extended, with the versions in this thesis as result.

Throughout the years, DCPN, SDCPN and SDCPNimt have been used numerous times to model

and analyse air transport operations, both at NLR and beyond2. Therefore, a lot of modelling and

analysis experience has been developed. Most often, the analysis interests are related to reachability

questions. For example, an SDCPNimt model of an air transport operation is analysed to determine

probability distributions for the distance between aircraft. Since these models tend to be large3, and

since the most interesting distances (being the small ones) tend to occur rarely, the analysis is by

means of Monte Carlo simulations, which are made more efficient due to the stochastic analysis

properties of PDP and GSHP.

Unfortunately, this thesis has no room to illustrate the analysis of a full-scale example SDCPN.

Instead, this chapter gives some simple examples of DCPN and SDCPN, illustrates their mapping

to PDP and GSHP, illustrates analysis tools for these formalisms, and illustrates the effectiveness

of the SDCPNimt approach.

6.1 Analysis of classical Petri net properties for SDCPN

Section 2.2.2 of this thesis explained that the analysis of classical types of Petri net, such as

place/transition net (P/T net), mainly focuses on studying properties like boundedness (i.e., the set

of reachable markings is finite), reachability (i.e., can a particular marking be reached from the

initial marking) and liveness (i.e., will a particular transition or a set of transitions fire again). For

P/T nets, many of these properties have been proven to be decidable, i.e., an effective algorithm

1The first version DCPN was published in 1997, [EBK97].
2Examples of applications outside NLR are at Old Dominion University (Norfolk, Virginia, USA) [HGG07], and

the Universities of São Paolo (Brazil) [OHC06, OCBB07], Tokyo (Japan) [IEBB09] and Belgrade (Serbia) [NVT+10].
3Typical examples cover between 50 and 400 pages of Petri net graphs and details of components.

138 Analysis of DCPN and SDCPN

exists that determines if the P/T net has the property or not, Section 2.2.2. For many extensions

of P/T net, decidability of these properties quickly disappears. The proof of this exploits the

Church-Turing thesis and Rice’s theorem, from which it can be shown that non-trivial properties

like boundedness, reachability, and liveness are undecidable for Petri net classes that are Turing-

complete. Here, Turing-completeness is shown by proving that the Petri net class considered can

emulate a universal Turing machine, Section 2.2.2.

Sihombing, [Sih05] gives an algorithm that provides sufficient conditions for boundedness of

a special class of DCPN, i.e., DCPN without inhibitor arcs or enabling arcs. Since this algorithm

does not give necessary conditions for boundedness, it is not guaranteed to give a decision. In fact,

it can be shown that necessary conditions will not exist, not even for this special class of DCPN.

This is due to Turing-completeness of DCPN, which is proven below.

Theorem 6.1 (DCPN Turing-complete). Dynamically coloured Petri nets are Turing-complete.

Proof. This is by construction of a DCPNTuring that emulates a universal Turing machine. The

constructed DCPNTuring has one place, one immediate transition and two ordinary arcs, such that

the place is both input and output place to the transition. The place contains a token, the colour

of which contains the Turing machine’s tape, the position of the tape head, and the current state.

The DCPNTuring transition is always enabled. The firing measure of the DCPNTuring transition

emulates the Turing machine’s action table, i.e., it reads from the input token the symbol at the tape

and the current state, and it produces an output token that has a colour according to the output of

the Turing machine action table.

Obviously, Theorem 6.1 holds true for SDCPN and SDCPNimt as well.

With Theorem 6.1, the Church-Turing thesis and Rice’s theorem, boundedness, reachability and

liveness are undecidable for DCPN. The undecidability of these properties for DCPN can also be

shown indirectly, through the following theorems from literature, which prove Turing-completeness

of special cases of DCPN:

• P/T nets with inhibitor arcs are Turing-complete. Proof: [Age74].

• P/T nets extended with priority firing rules are Turing-complete. Proof: [Hac76].

• GSPN (generalised stochastic Petri nets) are Turing-complete, even if the set of inhibitor arcs

is empty. Proof: [Cia87].

Note that by this, undecidability of DCPN properties is proven to be due to several of the DCPN

features independently, meaning that in special cases of DCPN where one or two of these features

are not used (e.g., DCPN without inhibitor arcs), Turing-completeness still holds true.

6.2 Example SDCPN and mapping to HSDE and GSHS 139

It was shown in Chapter 5 that for practical applications, boundedness of SDCPNimt is supported

by allowing one token per local Petri net, and connecting LPN in such a way that the connections

do not change the number of tokens locally. This leaves posing restrictions on the number of tokens

in IPNs (interaction Petri nets, see Figure 5.3). This guarantees that boundedness, in fact one of the

conditions for SDCPNimt to be equivalent to GSHP, is satisfied. Next, stochastic analysis tools for

GSHP can be used to answer further questions, see, e.g., [BBK+05].

6.2 Example SDCPN and mapping to HSDE and GSHS

This section gives a simple example SDCPN model and its mapping to HSDE and to GSHS.

6.2.1 Aircraft evolution example

Assume the deviation of an aircraft from its intended path depends on the mode of operation

of two of its aircraft systems: the engine system, and the navigation system. Each of these

aircraft systems can be in one of two modes: Working (i.e., functioning properly) or Not working

(i.e., operating in some degradation or failure mode). Both systems switch between their modes

independently and with exponentially distributed sojourn times, with finite rates δ3 (engine

repaired), δ4 (engine fails), δ5 (navigation repaired) and δ6 (navigation fails). The mode of operation

of these systems has the following effect on the aircraft path: if both systems are Working, the

aircraft evolves in Nominal mode and the position Yt and velocity St of the aircraft are determined

by the vector solution of dXt = V1(Xt)dt+W1dWt, where Xt = (Yt, St)
′. If either one, or both, of

the systems is Not working, the aircraft evolves in Non-nominal mode and the position and velocity

of the aircraft are determined by the vector solution of dXt = V2(Xt)dt + W2dWt. The factors

W1 and W2 are determined by wind fluctuations. Initially, the aircraft has position Y0 and velocity

S0, while both its systems are Working. The evaluation of this process may be stopped when the

aircraft has Landed, i.e., its vertical position and velocity are equal to zero.

This simple aircraft evolution example illustrates the kind of difficulty encountered when

modelling a realistic problem directly as an HSDE (or a GSHS). Mathematically one would define

three discrete valued processes {θ1t }, {θ2t }, {θ3t }, and an R6-valued process {Xt}:

• {θ1t } represents the aircraft evolution mode assuming values in {Nominal, Non-nominal,

Landed};

• {θ2t } represents the navigation mode assuming values in {Working, Not working};

• {θ3t } represents the engine mode assuming values in {Working, Not working};

• {Xt} represents the three-dimensional position and three-dimensional velocity of the aircraft

140 Analysis of DCPN and SDCPN

The process {θt, Xt}, with θt = Col{θ1t , θ2t , θ3t }, is not an HSDE (or GSHS), since some θt

combinations (such as Col{Nominal, Not working, Not working}) lead to immediate jumps, which

is not allowed for HSDE (or GSHS) since at times of immediate jumps the HSDE (or GSHS) state

would not be associated to a unique state value.

6.2.2 SDCPN model for the aircraft evolution example

This subsection models the previously described aircraft evolution example by an SDCPN.

The first step is to identify Petri nets for each of the separate entities that exist in the air transport

operation. These individual Petri nets are referred to as local Petri nets (LPN). The entities identified

are: Aircraft evolution, Engine system, and Navigation system. This gives three local Petri nets.

The resulting graphs are given in Figure 6.1.

P2

IT1 I T2

•P1

G

T7

G
T8

P7

Evolution

P3 D
T4

D

T3

•
P4

Engine

P5 D
T6

D

T5

•
P6

Navigation

Figure 6.1 Local Petri nets for the aircraft operations example. Place P1 models Evolution

Nominal, P2 models Evolution Non-nominal, P3 models Engine system Not working, P4 models

Engine system Working, P5 models Navigation system Not working, P6 models Navigation system

Working, P7 models aircraft has Landed

The interactions between the Engine and Navigation local Petri net and the Evolution local Petri

net are modelled by coupling the local Petri nets by additional arcs (and, if necessary, additional

places or transitions). Aircraft evolution switches to Non-nominal (Transition T1 fires) if Engine

and/or Navigation are in Not working (if P3 and/or P5 have a token). Evolution switches back to

Nominal if both Engine and Navigation are Working (both P4 and P6 have a token). Here, undesired

removal of a token from one local Petri net by a transition of another local Petri net is prevented by

using enabling arcs instead of ordinary arcs for the interactions. The resulting graph is presented

in Figure 6.2. Notice that transition T1 has to be replaced by two transitions T1a and T1b in order

to allow both the Engine and the Navigation LPNs to influence transition T1 separately from each

other4.

The graph in Figure 6.2 completely defines SDCPN elements P , T , A and N , where TG =

{T7, T8}, TD = {T3, T4, T5, T6} and TI = {T1a, T1b, T2}. The other SDCPN elements are specified

below.

4Note that this duplication can be avoided by using a merging arc from P3 and P4 to T1, see SDCPNimt.

6.2 Example SDCPN and mapping to HSDE and GSHS 141

P2

IT1a I
T1b

I T2

•
P1

G T7

G T8

P7

P3

D
T4

D
T3

•
P4

P5 D
T6

D
T5

•
P6

Figure 6.2 Local Petri nets integrated into one Petri net

S: Two colour types are defined; S = {R0,R6}.

C: C(P1) = C(P2) = C(P7) = R6, hence n(P1) = n(P2) = n(P7) = 6. The first three colour

components of a token in P1, P2 or P7 model the longitudinal, lateral and vertical position

of the aircraft, the last three components model the corresponding velocities. Moreover,

C(P3) = C(P4) = C(P5) = C(P6) = R0 , ∅ hence n(P3) = n(P4) = n(P5) = n(P6) = 0.

I: With probability one, Place P1 initially has a token with colour X0 = (Y0, S0)
′, with Y0 ∈

R2× (0,∞) and S0 ∈ R3 \Col{0, 0, 0}. Places P4 and P6 initially each have a token without

colour.

V,W: The token colour functions for places P1, P2 and P7 are determined by (V1,W1), (V2,W2),

and (V7,W7), respectively, where (V7,W7) = (0, 0). For places P3 – P6 there is no token

colour function.

G: Transitions T7 and T8 have a guard that is defined by GT7 = GT8 = R2×(0,∞)×R2×(0,∞).

D: The jump rates for transitions T3, T4, T5 and T6 are DT3(·) = δ3, DT4(·) = δ4, DT5(·) = δ5

and DT6(·) = δ6, respectively.

F : Each transition has a unique output place, to which it fires a token with a colour (if applicable)

equal to the colour of the token removed, i.e., for all T , FT (1, ·; ·) = 1.

142 Analysis of DCPN and SDCPN

6.2.3 Mapping to HSDE and to GSHS

In this subsection, the SDCPN for the aircraft evolution example is mapped to an HSDE,

following the construction in the proof of Theorem 4.5. Next, the mapping to GSHS is also

explained.

The first step is to construct the state space M for the HSDE discrete process {θt}. This is done

by identifying the SDCPN reachability graph. Nodes in the reachability graph provide the number

of tokens in each of the SDCPN places. Arrows connect these nodes as they represent transitions

firing. The SDCPN of Figure 6.2 has seven places hence the reachability graph has elements that

are vectors of length 7. Since there is always one token in the set of places {P1, P2, P7}, one

token in {P3, P4} and one token in {P5, P6}, the reachability graph has 3 × 2 × 2 = 12 nodes, see

Figure 6.3. However, four nodes are excluded from M: nodes (1, 0, 1, 0, 0, 1, 0), (0, 1, 0, 1, 0, 1, 0)

and (1, 0, 0, 1, 1, 0, 0) enable immediate transitions (i.e., are vanishing nodes), and node (1, 0, 1, 0,

1, 0, 0) cannot be reached since it requires the enabling of a delay transition that is competing with

an immediate transition, while due to SDCPN rule R0, an immediate transition always gets priority.

Therefore, M, i.e., the state space for {θt}, consists of the remaining 8 nodes {V1, V2, V3, V4, V5,
V6, V7, V8}, which are specified in Table 6.1.

V4 =(0,1,1,0,1,0,0) (0,0,1,0,1,0,1)= V8

(1,0,1,0,1,0,0)

V2 =(0,1,1,0,0,1,0) (0,1,0,1,1,0,0)= V3

V6 =(0,0,0,1,1,0,1) (0,0,1,0,0,1,1)= V7

(1,0,1,0,0,1,0) (0,1,0,1,0,1,0) (1,0,0,1,1,0,0)

V1 =(1,0,0,1,0,1,0) (0,0,0,1,0,1,1)= V5

T5
T6 T3 T4

T8

T3
T4 T6 T5

T1a T3 T5 T1b
T8

T5 T6 T4
T3

T4 T2 T6

T7

T8

Figure 6.3 Reachability graph for the SDCPN of Figure 6.2. The nodes in bold type face

correspond with the elements of M.

Since initially there is a token in places P1, P4 and P6, the initial mode θ0 equals θ0 = V1 =

(1, 0, 0, 1, 0, 1, 0). The HSDE initial continuous state value equals the vector containing the initial

colours of all initial tokens. Since the initial colour of the token in Place P1 equals X0, and

the tokens in places P4 and P6 have no colour, the HSDE initial continuous state value equals

6.2 Example SDCPN and mapping to HSDE and GSHS 143

Table 6.1 Discrete modes in M

Node Engine Navigation Evolution

V1 = (1, 0, 0, 1, 0, 1, 0) Working Working Nominal
V2 = (0, 1, 1, 0, 0, 1, 0) Not working Working Non-nominal
V3 = (0, 1, 1, 0, 1, 0, 0) Not working Not working Non-nominal
V4 = (0, 1, 0, 1, 1, 0, 0) Working Not working Non-nominal
V5 = (0, 0, 0, 1, 0, 1, 1) Working Working Landed
V6 = (0, 0, 1, 0, 0, 1, 1) Not working Working Landed
V7 = (0, 0, 1, 0, 1, 0, 1) Not working Not working Landed
V8 = (0, 0, 0, 1, 1, 0, 1) Working Not working Landed

Col{X0, ∅, ∅} = X0.

The drift coefficient f(θ, ·) is given by f(θ, ·) = V1(·) for θ = V1, f(θ, ·) = V2(·) for θ ∈
{V2, V3, V4}, and f(θ, ·) = 0 otherwise. For the diffusion coefficient, g(θ, ·) = W1 for θ = V1,

g(θ, ·) = W2 for θ ∈ {V2, V3, V4}, and g(θ, ·) = 0 otherwise, see Table 6.2.

The hybrid state space is determined by the transition guards: E = {θ} × Eθ; θ ∈ M}, where

for θ ∈ {V1, V2, V3, V4}, Eθ = R2 × (0,∞)× R2 × (0,∞) and for θ ∈ {V5, V6, V7, V8}, Eθ = R6.

The jump rate Λ(θ, ·) is determined from the enabling rates corresponding with the set of delay

transitions in TD that, under token distribution θ, are pre-enabled. At each time, always two delay

transitions are pre-enabled: either T3 or T4 and either T5 or T6. Hence Λ(θ, ·) = ∑
i=j,kDTi(·) if Tj

and Tk are pre-enabled. See Table 6.2 for the resulting Λ’s.

Table 6.2 Example HSDE components f(θ, ·), g(θ, ·) and Λ(θ, ·) as a function of θ

θ f(θ, ·) g(θ, ·) Λ(θ, ·)
V1 V1(·) W1 δ4 + δ6
V2 V2(·) W2 δ3 + δ6
V3 V2(·) W2 δ3 + δ5
V4 V2(·) W2 δ4 + δ5
V5 0 0 δ4 + δ6
V6 0 0 δ3 + δ6
V7 0 0 δ3 + δ5
V8 0 0 δ4 + δ5

For the determination of elements ψ, ρ and µ, we first construct a probability measure PQ, by

making use of the reachability graph, the sets D, G and F and the rules R0–R4. In Table 6.3,

PQ(θ
′, x′; θ, x) = p denotes that if (θ, x) is the value of the HSDE state before the hybrid jump,

then, with probability p, (θ′, x′) is the value of the HSDE state immediately after the jump.

Next, ψ, ρ and µ are determined as follows: Since the continuous valued process jumps to

the same value with probability 1, we find ψ(Vi, Vj, x, z) = 0 for all Vi, Vj , x, z. Moreover,

ρ(Vi, Vj, x) = PQ(Vi, x, Vj, x) and µ may be any given invertible probability measure.

144 Analysis of DCPN and SDCPN

Table 6.3 Example PQ

For x /∈ ∂EV1 : PQ(V2, x;V1, x) =
δ4

δ4+δ6
, PQ(V4, x;V1, x) =

δ6
δ4+δ6

For x ∈ ∂EV1 : PQ(V5, x;V1, x) = 1

For x /∈ ∂EV2 : PQ(V3, x;V2, x) =
δ6

δ3+δ6
, PQ(V1, x;V2, x) =

δ3
δ3+δ6

For x ∈ ∂EV2 : PQ(V6, x;V2, x) = 1

For x /∈ ∂EV3 : PQ(V4, x;V3, x) =
δ3

δ3+δ5
, PQ(V2, x;V3, x) =

δ5
δ3+δ5

For x ∈ ∂EV3 : PQ(V7, x;V3, x) = 1

For x /∈ ∂EV4 : PQ(V3, x;V4, x) =
δ4

δ4+δ5
, PQ(V1, x;V4, x) =

δ5
δ4+δ5

For x ∈ ∂EV4 : PQ(V8, x;V4, x) = 1

For all x: PQ(V6, x;V5, x) =
δ4

δ4+δ6
, PQ(V8, x;V5, x) =

δ6
δ4+δ6

For all x: PQ(V7, x;V6, x) =
δ6

δ3+δ6
, PQ(V5, x;V6, x) =

δ3
δ3+δ6

For all x: PQ(V8, x;V7, x) =
δ3

δ3+δ5
, PQ(V6, x;V7, x) =

δ5
δ3+δ5

For all x: PQ(V7, x;V8, x) =
δ4

δ4+δ5
, PQ(V5, x;V8, x) =

δ5
δ4+δ5

With this, the SDCPN of the aircraft evolution example is uniquely mapped to an HSDE.

The mapping of SDCPN into GSHS is very similar to the mapping of SDCPN into HSDE.

The main difference is that instead of elements ψ, ρ and µ, GSHS uses an element Q which is a

transition measure for the size of jumps. We find that this Q is equal to measure PQ constructed in

Table 6.3.

Note that if, in addition, we want to make use of the HSDE properties of Proposition 4.3, e.g.,

the resulting HSDE solution process being pathwise unique and a semi-martingale, we need to make

sure that HSDE conditions H1-H8 are satisfied. It is shown below that they are, under sufficient

condition S1 for the example SDCPN.

S1 For all r ∈ N and for all P ∈ P , there exist Kv
P , Lvr,P , Kw

P and Lwr,P such that for all c ∈ C(P)
and any a, b in the ball {z ∈ C(P) | |z| ≤ r + 1},

• |VP (c)|2 ≤ Kv
P (1 + |c|2)

• |VP (b)− VP (a)|2 ≤ Lvr,P |b− a|2

• ‖WP (c)‖2 ≤ Kw
P (1 + |c|2)

• ‖WP (b)−WP (a)‖2 ≤ Lwr,P |b− a|2.

We verify that under condition S1, HSDE conditions H1-H8 hold true in this example.

H1: From the construction of f and g above we have for θ = V1: |f(θ, x)|2 + ‖g(θ, x)‖2 =

|V1(x)|2 + ‖W1(x)‖2 ≤ Kv
P1
(1 + |x|2) + Kw

P1
(1 + |x|2) = K(θ)(1 + |x|2), with K(θ) =

(Kv
P1

+Kw
P1
). For θ = V2, V3, V4 the verification is with replacing V1, W1 by V2, W2.

6.3 Example DCPN and its analysis by means of PDP stochastic analysis tools 145

H2: From the construction of f and g above we have for θ = V1: |f(θ, x)− f(θ, y)|2+ ‖g(θ, x)−
g(θ, y)‖2 = |V1(x) − V1(y)|2 + ‖W1(x) − W1(y)‖2 ≤ Lvr,P1

|x − y|2 + Lwr,P1
|x − y|2 =

Lr(θ)|x− y|2 with Lr(θ) = Lvr,P1
+ Lwr,P1

. For θ = V2, V3, V4 replace V1, W1 by V2, W2.

H3: Since δ3, . . . , δ6 are constant, for all θ, Λ(θ, ·) is bounded and continuous, with upper bound

RΛ = max{δ4 + δ6, δ3 + δ6, δ3 + δ5, δ4 + δ5}.

H4: Since for all θ, ϑ, PQ(ϑ, ·; θ, x) is constant, we find ρ(ϑ, θ, x) = PQ(ϑ, x, θ, x) is continuous.

H5 and H6: These are satisfied due to ψ(Vi, Vj, x, z) = 0 for all Vi, Vj , x, z.

H7: This condition holds due to δ3, . . . , δ6 being finite and the fact that in this SDCPN example,

there is no firing sequence of more than one guard transition.

H8: This condition holds for all V1, . . . , V8, with metric |a|2 = ∑
i(ai)

2.

Thanks to this mapping we can now use HSDE stochastic analysis tools to analyse the GSHP that

is defined by the execution of the SDCPN model for the example.

From a mathematical perspective, the HSDE (or GSHS) model has advantages, such as a direct

support in stochastic process (or automata formal methods) theory. However, the HSDE (or GSHS)

model does not show the structure of the SDCPN. Because of this, the SDCPN model of Subsection

6.2.2 is simpler to comprehend and to verify against the aircraft evolution example description of

Subsection 6.2.1. These complementary advantages from both perspectives tend to increase with

the complexity of the considered operation.

6.3 Example DCPN and its analysis by means of PDP stochastic

analysis tools

As another illustrative example, consider two opposite streams of air traffic at the same flight

level (see Figure 6.4).

Airport

A

Airport

B

Figure 6.4 Top view of two opposite direction parallel lanes at the same flight level

146 Analysis of DCPN and SDCPN

The behaviour of these aircraft is modelled by DCPN, and we are interested in the behaviour of

two aircraft i and j relative to each other. This behaviour is represented by process {κijt }. Due to the

equivalence between DCPN and PDP, and due to the strong Markov property of PDP, the execution

of a DCPN is also a strong Markov process. Therefore, we are able to capture the behaviour of

these two aircraft at a stopping time τ ij , and we are able to make the analysis much more efficient.

Stopping time used

Let τ ij be the first moment of overlap in along-lane direction between aircraft i and aircraft j,

i.e.,

τ ij , min{t1, inf{t ≥ t1 − tH ;
∣∣yij1,t

∣∣ ≤ dij1 +∆}} (6.3.1)

with t1 the time horizon, tH equals one hour being the time unit of interest, yij1,t the distance between

the centres of the aircraft in the direction of the parallel lanes, dij1 the average length of the two

aircraft, and ∆ a small positive value.

DCPN model

A DCPN model for this example will consist of several local Petri nets that interact, and will

be developed according to the steps outlined in Chapter 5. For illustration purposes, we will give

a simple example DCPN, consisting of three interacting local Petri nets (LPN) Evolution, Engine,

and Display, see Figure 6.5.

Display Evolution Engine

•
Accurate

Down

Inaccurate

•
Nominal

Non-nominal

•
Working

Not working

D

λ4

D

λ3

D

λ5

D λ6

IIII Dλ1 D λ2

Figure 6.5 Three local Petri nets that interact. The delay transitions fire with rate λ as indicated

The evolution of an aircraft (middle LPN in Figure 6.5) can be in two modes: Nominal

(the aircraft flies according to expectations) and Non-nominal (the aircraft may deviate from

expectations). The aircraft position and velocity follow a differential equation which is different in

6.3 Example DCPN and its analysis by means of PDP stochastic analysis tools 147

the Nominal and in the Non-nominal case. The switchings between these modes are controlled by

two other LPNs, aircraft Display (on the left hand side in Figure 6.5) and aircraft Engine (on the

right hand side). The Display has three modes: Accurate, Inaccurate and Down, between which

it switches according to transition-dependent but colour-independent exponential rates as indicated

in the figure by λ3 through λ6. The Engine has two modes Working and Not working, also with

exponential switchings, with rates λ1 and λ2. As is modelled by the immediate transitions and the

enabling arcs, in case of a token in Down, Inaccurate, or Not working, aircraft Evolution switches

to Non-nominal; in case of a token in both Accurate and Working, aircraft Evolution switches back

to Nominal.

Representation of behaviour as a process

The behaviour of the aircraft is determined by a differential equation for the position and

velocity of the aircraft, which is different if it is in Nominal evolution mode compared to Non-

nominal evolution mode. To capture the relative behaviour of the two aircraft, we are interested

in the probability, at the selected stopping time, that both aircraft are in Nominal modes, the

probability that both aircraft are in Non-nominal mode, and the probability of two mixed mode

classes. However, it can be expected that if an aircraft is in Non-nominal mode for a long time, and

switches to Nominal right before it meets another aircraft, that this cannot really be counted as a

‘Nominal’ encounter. For this reason, we assume that an encounter is considered Nominal if during

the whole 120 second period before the aircraft meet each other, their evolution is in Nominal mode.

The Non-nominal and mixed mode cases are defined analogously. This gives four classes:

• κ11 denoting an encounter in which both aircraft i and j have been in Nominal mode during

the last 120 seconds before they pass each other;

• κ12 denoting an encounter in which aircraft i has been in Nominal mode during the last 120

seconds, and aircraft j has been in Non-nominal mode some time during the last 120 seconds;

• κ21 denoting an encounter in which aircraft j has been in Nominal mode during the last 120

seconds, and aircraft i has been in Non-nominal mode some time during the last 120 seconds;

and

• κ22 denoting an encounter in which both aircraft i and j have been in Non-nominal mode

some time during the last 120 seconds.

Evaluation of P{κij
τ ij

= κ}, κ ∈ {κ11, κ12, κ21, κ22}

To calculate the probability of occurrence of each κ ∈ {κ11, κ12, κ21, κ22}, we make use of

Markov chain analysis techniques.

148 Analysis of DCPN and SDCPN

Since the firings of the transitions in the Engine LPN are independent of the other LPNs and

since both transitions are delay transitions with switching rates independent of colour and time, the

Engine LPN is equivalent to a Markov chain with states [Working,Not working]. The same holds

for the Display LPN with states [Accurate, Inaccurate,Down].

If the row vector π(t) denotes the probability density of a Markov chain at time t, i.e., the ith

component of π(t) defines the probability that the Markov chain is in its ith state at time t, π(t)

satisfies the forward Kolmogorov equation

d

dt
π(t) = π(t) ·Υ(t) (6.3.2)

with the infinitesimal generator Υ(t) a square matrix with components qkℓ(t) defined by:

• qkℓ(t) is the rate at which the Markov chain moves from state k to state ℓ at time t, k 6= ℓ

• −qkk(t) is the rate at which the Markov chain departs from state k at time t, if it is in k at

time t

Under conditions of no guard transitions and no time or colour dependent delays and firing

measures, the infinitesimal generator Υ(t) is independent of time, Υ(t) = Υ, and Equation (6.3.2)

has solution π(t) = π(0) exp(Υ · t), where

exp(Υ · t) , I +Υ · t+Υ2 · t
2

2!
+ Υ3 · t

3

3!
+ · · · (6.3.3)

For the DCPN example considered it follows that

ΥEngine =

[
−λ1 λ1

λ2 −λ2

]
and ΥDisplay =



−λ4 − λ5 λ4 λ5

λ3 −λ3 0

0 λ6 −λ6




We assume that the initial state π(0) of these two LPNs is according to a steady state distribution,

which can be found from 0 = d
dt
π(t) = π(0) ·Υ, which gives

πEngine(0) =
[

λ2
λ1+λ2

λ1
λ1+λ2

]
and

πDisplay(0) =
[

λ3λ6
λ4λ6+λ3λ6+λ3λ5

λ4λ6
λ4λ6+λ3λ6+λ3λ5

λ3λ5
λ4λ6+λ3λ6+λ3λ5

]

This means that at time t = 0, the token in Engine is in place Working with probability λ2
λ1+λ2

and

is in Not working with probability λ1
λ1+λ2

. Analogously for Display places Accurate, Inaccurate and

Down.

6.4 Example illustrating the effectiveness of SDCPNimt 149

We assume λ1 = 4 · 10−8, λ2 = 3 · 10−3, λ3 = 2 · 10−3, λ4 = 4 · 10−7, λ5 = 4 · 10−8, and

λ6 = 3 · 10−3, which gives πEngine(0) = [0.99999, 1.33 · 10−5] and πDisplay(0) = [0.99979, 2.00 ·
10−4, 1.33 · 10−5].

Next, we evaluate P{κij
τ ij

= κ} for κ ∈ {κ11, κ12, κ21, κ22}. The only challenge is that π(120)

given by equation π(t) = π(0) exp(Υ · t) for t = 120 gives us the probability density of the

Evolution modes at time t = 120, but this gives us no knowledge of whether Evolution has been in

Non-nominal any time during the previous 120 seconds. A way out is to make the Down, Inaccurate

and Not working modes ‘absorbing’, i.e., delete the transitions labelled by λ2, λ3 and λ6, and see

if after the 120 second period the Markov chain is still in a Nominal mode. If it is, it cannot have

been in Non-nominal during these 120 seconds because there is no way out of there.

The infinitesimal generators for the thus modified Markov chains for LPNs Engine and Display

are:

Υ′
Engine =

[
−λ1 λ1

0 0

]
and Υ′

Display =



−λ4 − λ5 λ4 λ5

0 0 0

0 0 0


 .

Solving (e.g., by means of MATLAB software) for π′(120) = π(0) exp(Υ′ · 120), gives

π′
Engine(120) = πEngine(0) exp(Υ

′
Engine · 120) = [0.99998, 1.81 · 10−5] and π′

Display(120) =

πDisplay(0) exp(Υ
′
Display · 120) = [0.99973, 2.48 · 10−4, 1.81 · 10−5]. Then, the probability of

one aircraft staying in Nominal mode during the entire 120 seconds equals the product of the first

components of π′
Engine(120) and π′

Display(120), which is 0.99972 and the probability of one aircraft

having been in Non-nominal mode some time during these 120 seconds equals 1 − 0.99972 =

2.84 ·10−4. Since these modes for one aircraft are independent from the modes of other aircraft, we

get P{κij
τ ij

= κ11} = (0.99972)2 = 0.99943, P{κij
τ ij

= κ12} = 0.99972 · 2.84 · 10−4 = 2.84 · 10−4,

P{κij
τ ij

= κ21} = 2.84 ·10−4 ·0.99972 = 2.84 ·10−4, P{κij
τ ij

= κ22} = (2.84 ·10−4)2 = 8.08 ·10−8.

Note that all values used are considered to be illustrative only.

For more extended examples we refer to, e.g., [EBB07, BKB+07].

6.4 Example illustrating the effectiveness of SDCPNimt

This section aims to show the effectiveness of the interconnection mapping types developed in

Chapter 5, by means of application to a particular air transport example. This example application

is taken from [BKKB04], which has used the SDCPNimt formalism to model an operation referred

to as free flight (also referred to as self separation assurance), and to subsequently determine the

accident risk for this operation. Free flight is a concept where pilots are allowed to select their

aircraft trajectory freely at real time, at the cost of being responsible for preventing conflicts with

other aircraft. This is in contrast with conventional operations, where this responsibility is with

150 Analysis of DCPN and SDCPN

a dedicated ground-based air traffic control. The free flight operation can be organised in several

ways, i.e., different rules and procedures can be envisioned. The operation considered in [BKKB04]

is the one adopted in [Kle05].

6.4.1 LPNs of the free flight air transport example

In the free flight air transport example, the airspace is an en-route airspace without fixed routes

and without an active ATC (air traffic control) giving instructions. The pilots can try to optimise

their trajectory, due to the enlarged freedom to choose path and altitude. The pilots are only

limited by their responsibility to maintain airborne separation, in which they are assisted by a

system called ASAS (airborne separation assistance system). Each aircraft knows, through its

navigation, guidance and control systems, its own state (position, velocity). It also knows the state

information of other aircraft, which is sent via data-communication links. ASAS processes all

this information and uses it to detect conflicts, to determine conflict resolution manoeuvres and to

present an advisory to the pilots. All aircraft flying in the airspace considered are assumed to be

properly equipped with ASAS.

A large number of agents is involved in the free flight operation; in the setting chosen for the

initial risk assessment in [BKKB04], the following agents are taken into account:

• A pilot-flying in each aircraft, i.e., the pilot who is actually controlling the trajectory followed,

• A pilot-non-flying in each aircraft, i.e., the pilot who handles other tasks such as communi-

cation

• A number of systems and entities per aircraft, such as the aircraft’s position evolution and the

conflict management support systems,

• A number of global systems and entities, such as the communication frequencies and the

satellite system.

It was judged sufficient to specify the following number of LPNs for the agents:

• 6 LPNs for each pilot-flying,

• 2 LPNs for each pilot-non-flying,

• 36 LPNs for the systems and entities of each aircraft,

• 7 LPNs for global systems and the environment.

The actual number of LPNs in the whole model then depends on the numberN of aircraft involved,

and equals 7 +N · (6 + 2 + 36).

6.4 Example illustrating the effectiveness of SDCPNimt 151

Goal Memory PF

Memory

I

I I I I

Int-PF-GM1

Int-PF-GM5 Int-PF-GM3 Int-PF-GM4 Int-PF-GM2

Int-PF-ISA

Int-PF-TP1 Int-PF-TP2

Task Performance PF

Coordi-
nation

Monitoring
and deci-

sion

Monit-
oring

Monitoring
and goal
priorit-
isation

End
Task

Execution Execution
monitoring

G

interrupt

G

subsequent

D

D

D

D

D

D

D

G D

G

I I· · ·

State SA

I

Intent SA

G G

Cognitive Mode

Current Goal PF

Collision avoidance

Emergency actions

Conflict resolution

Navigation vertical

Navigation horizontal

Preparation route change

Miscellaneous

G

interrupt

G

subsequent

Figure 6.6 The agent pilot-flying in free flight is modelled by 6 different LPNs, interconnected

by arcs and IPNs

152 Analysis of DCPN and SDCPN

6.4.2 Interconnected LPNs of ‘pilot-flying’

This subsection illustrates, for the specific free flight air transport example, a Petri net model

for the pilot-flying as agent. A graphical representation of the six LPNs modelling the pilot-flying

is given in Figure 6.6, which is taken from [BKKB04]. The human-machine-interface where sound

or visual clues might indicate that attention should be paid to a particular issue, is represented by

an LPN that does not belong to the pilot-flying as agent and is therefore not depicted in the figure.

Similarly, the arcs to or from any other agent are not shown in Figure 6.6.

To get an understanding of the six different LPNs, take as a starting point the LPN ‘current goal’

(at the bottom of the figure) as it represents the objective the pilot-flying is currently working on.

Examples of such goals are ‘collision avoidance’, ‘conflict resolution’ and ‘horizontal navigation’.

For each of these goals, the pilot executes a number of tasks in a prescribed or conditional order,

represented in the LPN ‘task performance’. Examples of such tasks are ‘monitoring and decision’,

‘execution’ and ‘execution monitoring’. If all relevant tasks for the current goal are considered

executed, the pilot chooses another goal, thereby using his memory (where goals deserving attention

might be stored, represented by the LPN ‘goal memory’) and the human-machine-interface.

Whereas the LPNs ‘current goal’, ‘task performance’, and ‘goal memory’ are important in the

modelling of which task the pilot-flying is executing, the other three LPNs are important in the

modelling on how the pilot-flying is executing the tasks. The LPN ‘state SA’, where SA stands for

situation awareness, represents the relevant perception of the pilot about the states of elements in

his environment, e.g., whether he is aware of an engine failure. The LPN ‘intent SA’ represents the

intent, e.g., whether he needs to leave the free flight airspace. The LPN ‘cognitive mode’ represents

whether the pilot is in an opportunistic mode, leading to a high but error-prone throughput, or in a

tactical mode, leading to a moderate throughput with a low error probability.

6.4.3 Effectiveness of imt approach for example

From Figure 6.6, it will be clear that there are many interactions between the individual LPNs,

which are depicted as enabling or inhibitor arcs and as IPNs with one place only. Interconnection

mapping types I, IV, V, VI and VII have not been used, while type II has been used twice, type III

four times, and type VIII three times. Table 6.4 shows that without the use of these interconnection

mapping types the figure really would be cluttered with duplicated transitions and arcs within LPNs,

and with connections drawn between LPNs. The use of the interconnection mapping types makes

that the figure is still readable.

Another interesting observation is the vastness of the dimension of the state space for this

example. The pilot-flying (PF) agent consists of 6 LPNs, three of which have 1 place, two have 7

places and one has 2 places. In addition, there are 8 IPNs of 1 place each. In [BKB+07, Table 10.1]

6.4 Example illustrating the effectiveness of SDCPNimt 153

Table 6.4 Numbers of Petri net elements before and after application of interconnection mapping

types. The number of places (i.e., 19 places within LPNs and 8 places in IPNs) does not change

due to the interconnection mapping types

Number of elements In Figure 6.6 Without interconnection mapping types

Within LPNs 27 transitions 279 transitions

66 arcs 642 arcs

Between LPNs 16 ordinary arcs 293 ordinary arcs

7 enabling arcs 1023 enabling arcs

1 inhibitor arc 7 inhibitor arcs

Total 117 elements 2244 elements

it has been analysed that in total this provides a discrete state space of

|MPF | = 13+8 · 72 · 21 = 98,

when limited to the pilot-flying agent. Each LPN contains one token at each time instant. For ten

LPNs/IPNs, the colour type of their places is R, for two LPNs/IPNs, the colour type of their places

is R2, for one LPN, the colour type is R3 and for one LPN, the colour type is R5. This yields that

the maximum dimension of the continuous state space is

|PPF |∑

i=1

n(Pi) = 10 · 1 + 2 · 2 + 1 · 3 + 1 · 5 = 22,

when limited to the pilot-flying agent. For the SDCPN of the whole free flight air transport example,

[BKB+07, Table 10.3] analyses that the discrete state space is

|M| ≈ 16 · (0.777 · 1012)A,

where A is the number of aircraft considered. The maximum dimension of the continuous state

space of the whole SDCPN is
|P|∑

i=1

n(Pi) = 126A+ 21A2.

For A = 8, these numbers come down to

|M| ≈ 16 · (0.777 · 1012)8 ≈ 2.13 · 1096

|P|∑

i=1

n(Pi) = 126 · 8 + 21 · 82 = 2352.

It must be clear that it will be practically impossible to model such operation directly as a PDP or

an HSDE (or GSHS).

154 Analysis of DCPN and SDCPN

Chapter 7

Conclusions

7.1 Main results of this thesis

For a large range of complex applications, governments and industries invest in the development

of innovative new operations and systems existing of many distributed components that interact

in a dynamic way with many uncertainties. Before any such system can be introduced into

practice, an evaluation needs to have shown that both the system and the way it is used in its

new context realize the applicable objectives. If the new complex system is in its interactions

similar to a previous system, such investigation can be done by analysis judgement of capable

and experienced experts who judge local behaviour and implicitly assume that the interactions

are working as before. If the complex system is very different from the old system, then this

expert judgement approach falls short. A valuable alternative is to develop a mathematical model

that incorporates the interactions, analyse this model, mobilise domain experts to evaluate where

the model is representative for reality and where it needs improvement, and learn to understand

how the real system works by learning how the model works. This implies a growing need for

modelling and analysis formalisms. These formalisms should be able to capture the complexities of

the operation, such as dynamics, multi-dimensional continuous processes, discontinuities (jumps),

stochastics (randomness and uncertainties), and complex interactions, while at the same time, they

should support an effective and efficient analysis.

Petri nets, see Chapter 2, have shown to be useful for developing models of various complex

applications. Typical Petri net features are concurrency and synchronisation mechanism, hierar-

chical and modular construction, and natural expression of causal dependencies, in combination

with graphical and equational representation. Numerous extensions to the basic formalism have

been developed that combine different modelling features in an integrated way, including various

hybrid state Petri net versions, which combine discrete and continuous system aspects. For the

analysis part of the problem, Petri net properties can be studied with the objective to understand

156 Conclusions

the properties of the original system. Examples of such properties are boundedness, reachability,

and liveness. For basic classes of Petri net, such as place/transition net, the problem of decidability

of these properties are a main field of study. For stochastic classes of Petri net, these properties

quickly become become undecidable but transformations to, e.g., continuous-time Markov chains

can be used so that analysis tools for Markovian formalisms become available.

In order to combine the advantages of the Petri net modelling formalisms and those of the

Markovian analysis formalism, [MT94] and [MFT00] started the development of establishing

formal connections between Petri nets and stochastic processes. Their result is a hierarchy of

various dependability models based on their modelling power. At the left-hand-side of this power

hierarchy are Petri net models, with generalised stochastic Petri nets (GSPN) and deterministic

and stochastic Petri nets (DSPN) at the top. At the right-hand-side of this power hierarchy are

continuous-time Markov chains (CTMC) and semi-Markov processes at the top. Arrows between

different formalisms indicate that mappings exist, i.e., that the elements of one formalism can

be represented in terms of the elements of the other formalism, such that the executions, i.e.,

their solutions as a stochastic process, are equivalent. In this thesis, based on a series of studies

[EB03, EB05, EB06, EB10a, EB10b] we developed an extension of this power hierarchy in

probabilistic modelling, see Figure 7.1.

Generalised stochastic Petri net Continuous-time Markov chain

Deterministic stochastic Petri net Semi-Markov process

DCPN PDP

SDCPN GSHP

SDCPNimt

Figure 7.1 Power hierarchy among various model types. An arrow from a model to another model

indicates that the second model has more modelling power than the first model.

At the left hand side of this power hierarchy, we extended DSPN to dynamically coloured Petri

nets (DCPN) and further to stochastically and dynamically coloured Petri nets (SDCPN) and to

SDCPN with interconnection mapping types (SDCPNimt). At the right hand side of the power

hierarchy we extended semi-Markov processes to piecewise deterministic Markov processes (PDP)

7.1 Main results of this thesis 157

and further to general stochastic hybrid processes (GSHP).

DCPN (Section 3.3), SDCPN (Section 4.3) and SDCPNimt (Section 5.4) are hybrid Petri net

classes in which the tokens have Euclidean-valued colours that change through time (dynamically)

while the tokens reside in their place. For DCPN, these colours follow ordinary differential

equations, for SDCPN and SDCPNimt, the colours follow stochastic differential equations, hence

include diffusion. The extension of SDCPN with interconnection mapping types SDCPNimt

significantly simplifies the Petri net graphs, while maintaining the properties of SDCPN. The

strength of DCPN, SDCPN and SDCPNimt is their compositional specification power, which

makes available a hierarchical modelling approach that separates local modelling issues from

global modelling issues (Section 5.2), while making effective use of Petri net features such as

natural expression of causal dependencies, concurrency and synchronisation mechanism, modular

construction and graphical representation.

PDP (Section 3.4) have been introduced by [Dav84, Dav93] as the most general class of

continuous-time hybrid state Markov processes which include both discrete and continuous

processes, except diffusion. The strength of PDP is in its unique solution and strong Markov

properties, the càdlàg property (right continuous with left hand limits), and in the existence of

the extended generator, [Dav93].

GSHP extend PDP by incorporation of diffusion. GSHP can be defined in several ways. One

is by defining GSHP as the solution process of a hybrid stochastic differential equation (HSDE)

(Section 4.4). A second is by defining GSHP as the execution of a general stochastic hybrid system

(GSHS) (Section 4.8.1). The HSDE approach towards studying GSHP has been developed in a

series of complementary studies [Blo03, BBEP03, Kry06, KBB07]. The GSHS approach has been

developed in [BL04a, BL06]. The strength of HSDE is in its pathwise unique solution which is

càdlàg and adapted and is a semi-martingale. This allows the use of Itô’s differentiation rule for

semi-martingales and the existence of the extended generator, e.g., [BBEP03, Ell82, EAM95]. The

strength of GSHS is in its strong Markov property and the càdlàg property, and in the connection

to formal methods within automata theory, e.g., [BL04b]. Main differences between HSDE and

GSHS are (Section 4.8.1) that the semi-martingale property of GSHS execution is unknown, and

that HSDE removes a particular restriction of GSHS which excludes jump linear systems.

This thesis has proven that there exist equivalence relations between the formalisms above.

More specifically, it has shown:

• how DCPN can be mapped into the elements of PDP and the other way around (Theorems

3.1 and 3.2),

• how SDCPN can be mapped into HSDE and the other way around (Theorems 4.4 and 4.5)

• how SDCPN can be mapped into GSHS and the other way around (Theorems 4.6 and 4.7),

158 Conclusions

and

• how SDCPN can be extended to SDCPNimt while maintaining SDCPN properties (Sections

5.3 and 5.4).

In addition, the thesis has proven that these mappings are such, that the resulting processes on both

sides are probabilistically equivalent.

In [Van04, BLB05] such relation between elements is referred to as bisimilarity. Theorems 3.1

and 3.2 imply that DCPN and the PDP elements are bisimilar. Theorems 4.4 and 4.5 imply that

SDCPN and HSDE are bisimilar. Theorems 4.6 and 4.7 imply that SDCPN and GSHS are bisimilar.

The implications are that GSHS and HSDE are also bisimilar.

The implications of these bisimilarity relations are that the strengths of several formalisms are

combined. Figure 7.2 shows the relations between the formalisms, and the key tools available for

each of them.

Compositional
specification

Automata
theory

Probabilistic
analysis

Stochastic
analysis

SDCPN

HSDE

GSHS

GSHP

Bisimilarity

Execution

Figure 7.2 Relationship between SDCPN, GSHS, GSHP and HSDE, and their key properties and

advantages. Bisimilarity relations have two-directional arrows.

The bisimilarities between SDCPN, GSHS and HSDE mean that each of them inherits the

strengths of the other two formalisms. The compositional specification power of SDCPN makes it

relatively easy to develop a model for a complex system with multiple interactions, due to SDCPN

features such as natural expression of causal dependencies, concurrency and synchronisation

mechanism, hierarchical and modular construction and graphical representation. Subsequently,

in the analysis stage three alternative approaches can be taken. The first is through direct execution

of SDCPN and evaluation through, e.g., Monte Carlo simulation. The second is through mapping

the SDCPN into HSDE and evaluating its solution, with the advantages of stochastic analysis for

semi-martingales. The third is mapping the SDCPN into a GSHS and evaluating its execution,

with the advantages of connection to formal methods in automata theory and to optimal control

7.2 Further study 159

theory. With the GSHP resulting from any of these three means, properties become available such

as convergence of discretisation, existence of limits, existence of event probabilities, strong Markov

properties, and reachability analysis [Dav93, EK86, BL06].

Chapter 6 illustrated with simple examples how the strengths of these approaches work out in

practice.

7.2 Further study

Since their initiation, the class of DCPN, SDCPN and SDCPNimt has been used as one

of the main compositional modelling formalisms within an accident risk assessment feedback

methodology at the National Aerospace Laboratory NLR. Through the years, each of the steps,

methods and techniques used within this methodology has been subject of further research and

development, driven by demand from practical applications and the wish to improve. When

restricting to SDCPN-related developments, a few issues can be identified for further study:

• The analysis power of PDP and HSDE has been exploited to make Monte Carlo simulations

of the SDCPN model more efficient, see, e.g., [KB05b, BKB+07, Kry06]. However, the use

of formal methods in automata theory, e.g., [BL04b], to support analysis of SDCPN is still

an underdeveloped area.

• For classical Petri nets, such as place/transition net, a lot of research is available on studying

properties like boundedness, reachability and liveness. For many Petri net extensions,

including SDCPN, these properties quickly become undecidable. However, given the

equivalence relations between SDCPN and GSHP, such properties could be addressed from

a stochastic hybrid processes point of view, following, e.g., [BL03, PC04, BBK07, BLL08],

• For many Petri net classes, software is available to help in the construction, verification and

simulation of models, and in, e.g., the automatic generation of reachability graphs, see, e.g.,

[RH10]. For new classes like SDCPN, such software support is not commercially available.

A few years ago, an initiative was taken at NLR to develop an ‘Automatic code generator’

for DCPN, [Ovi03]. A feasible tool was developed for a special case of DCPN, but further

research will be necessary to develop it further, and extend it to support of SDCPN and

SDCPNimt.

160 Conclusions

Bibliography

[ABB+85] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte, and A. Cumani. On

Petri nets with stochastic timing. In Proceedings international workshop on timed Petri

nets, Torino, Italy, pages 80–87. IEEE computer society press, July 1985. (Cited on

page 24).

[ABC+91] M. Ajmone Marsan, G. Balbo, G. Chiola, G. Conte, S. Donatelli, and G. Franceschinis.

An introduction to generalized stochastic Petri nets. International journal of microelec-

tronics and reliability, 31(4):699–725, 1991. (Cited on page 24).

[ABD98] M. Ajmone Marsan, A. Bobbio, and S. Donatelli. Petri nets in performance analysis:

an introduction. Lectures on Petri nets I: basic models, 1491:211–256, 1998. (Cited on

page 24).

[AC87] M. Ajmone Marsan and G. Chiola. On Petri nets with deterministic and exponentially

distributed firing times. In G. Rozenberg, editor, Advances in Petri nets, volume 266 of

Lecture notes in computer science (LNCS), pages 132–145. Springer-Verlag, Berlin, 1987.

(Cited on page 25).

[ACB84] M. Ajmone Marsan, G. Conte, and G. Balbo. A class of generalized stochastic Petri nets

for the performance evaluation of multiprocessor systems. ACM transactions on computer

systems, 2(2):93–122, May 1984. (Cited on pages 24 and 25).

[AF73] T. Agerwala and M. Flynn. Comments on capabilities, limitations and correctness of

Petri nets. In G.J. Lipovski and S.A. Szygenda, editors, Proceedings of the 1st annual

symposium on computer architecture (ISCA), volume 1, pages 81–86. ACM press, 1973.

(Cited on page 24).

[Age74] T. Agerwala. A complete model for representing the coordination of asynchronous

processes. Technical report 32, Johns Hopkins university, Hopkins computer science

program, research, Baltimore, Maryland, USA, July 1974. (Cited on pages 24 and 138).

162 BIBLIOGRAPHY

[AHR00] W.M.P. Van der Aalst, K.M. Van Hee, and H.A. Reijers. Analysis of discrete-time

stochastic Petri nets. Statistica Neerlandica, 54(2):237–255, 2000. (Cited on pages 23

and 24).

[Ajm89] M. Ajmone Marsan. Stochastic Petri nets: an elementary introduction. In Advances in

Petri nets, volume 424 of Lecture notes in computer science (LNCS), pages 1–29. Springer-

Verlag, Berlin, 1989. (Cited on page 24).

[AK77] T. Araki and T. Kasami. Some decision problems related to the reachability problem for

Petri nets. Theoretical computer science, 3:85–104, 1977. (Cited on page 20).

[AKZ98] P. Antsaklis, X. Koutsoukos, and J. Zaytoon. On hybrid control of complex systems:

a survey. European journal of automation, 32:1023–1045, 1998. Presented at 3rd

international conference ADMP, automation of mixed processes: dynamic hybrid systems,

pages 1–8, Reims, France, March 1998. (Cited on page 25).

[Bag93] A. Bagchi. Optimal control of stochastic systems. M.J. Grimble, series editor, Series in

systems and control engineering. Prentice Hall International, 1993. (Cited on page 179).

[Bal01] G. Balbo. Introduction to stochastic Petri nets. In E. Brinksma, H. Hermanns, and J.-P.

Katoen, editors, Lectures on formal methods and performance analysis (FMPA), volume

2090 of Lecture notes in computer science (LNCS), pages 84–155. Springer-Verlag Berlin

Heidelberg, 2001. (Cited on page 24).

[BB93] G.J. Bakker and H.A.P. Blom. Air traffic collision risk modeling. In Proceedings 32nd

IEEE conference on decision and control (CDC), San Antonio, Texas, USA, volume 2,

pages 1464–1469, 1993. (Cited on page 195).

[BBB+01] H.A.P. Blom, G.J. Bakker, P.J.G. Blanker, J. Daams, M.H.C. Everdij, and M.B.

Klompstra. Accident risk assessment for advanced ATM. In G.L. Donohue and A.G.

Zellweger, editors, Air transportation systems engineering AIAA, volume 193 of Progress

in astronautics and aeronautics, pages 463–480. American institute of aeronautics and

astronautics (AIAA), Reston, Virginia, USA, 2001. Presented at 2nd USA/Europe air

traffic management R&D seminar, Orlando, Florida, USA, 1998. (Cited on pages 65

and 103).

[BBD+99] A. Battke, A. Borusan, J. Dehnert, H. Ehrig, C. Ermel, M. Gajewsky, K. Hoffmann,

B. Hohberg, J. Juhas, S. Lembke, A. Martens, J. Padberg, W. Reisig, T. Vesper, H. Weber,

and M. Weber. Initial realization of the "Petri Net Baukasten". Informatik-Bericht 129,

Humboldt Universität zu Berlin, Institut für Informatik, October 1999. (Cited on page 11).

BIBLIOGRAPHY 163

[BBEP03] H.A.P. Blom, G.J. Bakker, M.H.C. Everdij, and M.N.J. Van der Park. Stochastic

analysis background of accident risk assessment for air traffic management. Hybridge

report, D2.2, July 2003. http://hosted.nlr.nl/public/hosted-sites/hybridge/. (Cited on

pages 3, 6, 71, 79, 80, 82, 103, 157, and 196).

[BBK+05] H.A.P. Blom, G.J. Bakker, J. Krystul, M.H.C. Everdij, B. Klein Obbink, and M.B.

Klompstra. Sequential Monte Carlo simulation of collision risk in free flight air traffic.

Hybridge report, D9.4, August 2005. http://hosted.nlr.nl/public/hosted-sites/hybridge/.

(Cited on pages 103 and 139).

[BBK07] H.A.P. Blom, G.J. Bakker, and J. Krystul. Probabilistic reachability analysis for large

scale stochastic hybrid systems. In Proceedings 46rd IEEE conference on decision and

control (CDC), New Orleans, Louisiana, USA, December 2007. (Cited on page 159).

[BE09] H.A.P. Blom and M.H.C. Everdij. General stochastic hybrid process as pathwise unique

solution of hybrid stochastic differential equation on a hybrid state space. iFly report,

D7.2x, 2009. http://ifly.nlr.nl/. (Cited on page 82).

[BFF+95] E. Best, H. Fleischhack, W. Fra̧czak, R.P. Hopkins, H. Klaudel, and E. Pelz. A class

of composable high level Petri nets. In G. De Michelis and M. Diaz, editors, Proceedings

16th international workshop on application and theory of Petri nets (ATPN), Torino, Italy,

volume 935 of Lecture notes in computer science (LNCS), pages 103–120. Springer-Verlag,

1995. (Cited on page 29).

[BKB03] H.A.P. Blom, M.B. Klompstra, and G.J. Bakker. Accident risk assessment of simul-

taneous converging instrument approaches. Air traffic control quarterly, 11(2):123–155,

2003. (Cited on pages 103 and 105).

[BKB+07] H.A.P. Blom, J. Krystul, G.J. Bakker, M.B. Klompstra, and B. Klein Obbink. Free flight

collision risk estimation by sequential Monte Carlo simulation. In C.G. Cassandras and

J. Lygeros, editors, Stochastic hybrid systems: recent developments and research trends,

volume 24 of Control engineering, chapter 10, pages 247–281. Taylor & Francis Group/

CRC Press, November 2007. (Cited on pages 149, 152, 153, and 159).

[BKKB04] G.J. Bakker, B. Klein Obbink, M.B. Klompstra, and H.A.P. Blom. DCPN specification

of a free flight air traffic operation, working document. Technical report, National

Aerospace Laboratory NLR, Amsterdam, The Netherlands, August 2004. (Cited on

pages 34, 149, 150, and 152).

[BL03] M.L. Bujorianu and J. Lygeros. Reachability questions in piecewise deterministic Markov

processes. In O. Maler and A. Pnueli, editors, Proceedings 6th international workshop on

164 BIBLIOGRAPHY

hybrid systems: computation and control (HSCC), Prague, Czech Republic, volume 2623

of Lecture notes in computer science (LNCS), pages 126–140. Springer, April 2003. (Cited

on pages 159 and 196).

[BL04a] M.L. Bujorianu and J. Lygeros. General stochastic hybrid systems. In Proceedings

12th IEEE Mediterranean conference on control and automation (MED), Kusadasi, Aydin,

Turkey, June 2004. (Cited on page 157).

[BL04b] M.L. Bujorianu and J. Lygeros. General stochastic hybrid systems: modelling and

optimal control. In Proceedings 43rd IEEE conference on decision and control (CDC),

Nassau, Bahamas, December 2004. (Cited on pages 157 and 159).

[BL06] M.L. Bujorianu and J. Lygeros. Toward a general theory of stochastic hybrid systems. In

H.A.P. Blom and J. Lygeros, editors, Stochastic hybrid systems: theory and safety critical

applications, volume 337 of Lectures notes in control and information sciences (LNCIS),

pages 3–30. Springer, 2006. (Cited on pages 3, 6, 71, 100, 101, 103, 157, and 159).

[BLB05] M.L. Bujorianu, J. Lygeros, and M.C. Bujorianu. Different approaches on bisimulation

for stochastic hybrid systems. In M. Morari and L. Thiele, editors, Proceedings 8th

international workshop on hybrid systems: computation and control (HSCC), Zürich,

Switzerland, volume 3414 of Lecture notes in computer science (LNCS), pages 198–214,

2005. (Cited on pages 65 and 158).

[BLGP03] M.L. Bujorianu, J. Lygeros, W. Glover, and G. Pola. A stochastic hybrid system

modelling framework. Technical report, University of Cambridge and University of

L’Aquila, May 2003. (Cited on pages 3 and 196).

[BLL08] M.L. Bujorianu, J. Lygeros, and R. Langerak. Reachability analysis of stochastic hybrid

systems by optimal control. In M. Egerstedt and B. Mishra, editors, Proceedings 11th

international workshop on hybrid systems: computation and control (HSCC), St. Louis,

Missouri, USA, volume 4981 of Lectures notes in computer science (LNCS), pages 610–

613. Springer-Verlag, 2008. (Cited on page 159).

[Blo90] H.A.P. Blom. Bayesian estimation for decision-directed stochastic control. PhD thesis,

Delft University of Technology, 1990. (Cited on page 71).

[Blo03] H.A.P. Blom. Stochastic hybrid processes with hybrid jumps. In Proceedings IFAC

conference on analysis and design of hybrid system (ADHS), Saint-Malo, Brittany, France,

pages 361–365, June 2003. (Cited on pages 6, 71, 79, 80, 82, 103, 157, and 196).

BIBLIOGRAPHY 165

[BSC+93] G. Balbo, M. Silva, G. Chiola, J. Campos, et al. The timed (coloured) Petri net

formalism: position paper. In Proceedings workshop on formalisms, principles, and state-

of-the-art, Erlangen, Germany, volume 14, Band 26 of Arbeitsberichte des Instituts für

Mathematische Maschinen und Datenverarbeitung (Informatik), pages 3–60, 1993. (Cited

on pages 10, 11, and 25).

[BSEP03] H.A.P. Blom, S.H. Stroeve, M.H.C. Everdij, and M.N.J. Van der Park. Human cognition

performance model to evaluate safe spacing in air traffic management. In D. Harris and

H.C. Muir, editors, Human factors and aerospace safety: an international journal, volume

3, number 1, pages 59–82. Ashgate publishing, 2003. (Cited on page 105).

[Buj05] M.L. Bujorianu. A statistical inference method for the stochastic reachability analysis.

In Proceedings 44th IEEE conference on decision and control (CDC), Seville, Spain,

December 2005. (Cited on page 66).

[Cia87] G. Ciardo. Toward a definition of modeling power for stochastic Petri net models. In

Proceedings international workshop on Petri nets and performance models, Madison,

Wisconsin, USA, volume 796, pages 54–62. IEEE computer society press, 1987. (Cited

on pages 24 and 138).

[CL93] G. Ciardo and C. Lindemann. Analysis of deterministic and stochastic Petri nets. In

Proceedings 5th international workshop on Petri nets and performance models (PNPM),

Toulouse, France, pages 160–169. IEEE computer society press, October 1993. (Cited on

page 25).

[CL99] C.G. Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer

academic publishers, September 1999. (Cited on pages 10 and 11).

[CR83] J.E. Coolahan Jr. and N. Roussopoulos. Timing requirements for time-driven systems

using augmented Petri nets. IEEE transactions on software engineering, SE-9(5):603–616,

September 1983. (Cited on page 23).

[DA87] R. David and H. Alla. Continuous Petri nets. In Proceedings 8th international conference

on application and theory of Petri nets (ATPN), Zaragoza, Spain, volume 815 of Lecture

notes on computer science (LNCS), pages 275–294. Springer-Verlag, 1987. (Cited on

page 25).

[DA94] R. David and H. Alla. Petri nets for modeling of dynamic systems - a survey. Automatica,

30(2):175–202, 1994. (Cited on pages 10, 11, and 24).

166 BIBLIOGRAPHY

[Dav84] M.H.A. Davis. Piecewise deterministic Markov processes: a general class of non-

diffusion stochastic models. Journal royal statistical society (B), 46(3):353–388, 1984.

(Cited on pages 3, 5, 33, 157, and 195).

[Dav93] M.H.A. Davis. Markov models and optimization, volume 49 of Monographs on statistics

and applied probability. Chapman and Hall, London, 1993. (Cited on pages 3, 6, 33, 36,

44, 45, 47, 48, 58, 63, 157, 159, 179, and 195).

[Dav97] R. David. Modeling of hybrid systems using continuous and hybrid Petri nets. In

Proceedings international workshop on Petri nets and performance models, St Malo,

France, pages 47–58, Los Alamitos, California, USA, June 1997. IEEE computer society.

(Cited on page 26).

[DFGS07] M. Dotoli, M.P. Fanti, A. Giua, and C. Seatzu. First-order hybrid Petri nets. An

application to distributed manufacturing systems. Nonlinear analysis: hybrid systems and

applications, 2007. (Cited on page 31).

[DK96] I. Demongodin and N.T. Koussoulas. Modeling dynamic systems through Petri nets.

In Proceedings IEEE international conference on systems, man and cybernetics (SMC)

– Computational engineering in systems applications (CESA), IMACS multiconference,

symposium on discrete events and manufacturing systems, Lille, France, pages 279–284,

July 1996. (Cited on page 26).

[DK98] I. Demongodin and N.T. Koussoulas. Differential Petri nets: representing continuous

systems in a discrete-event world. In IEEE transactions on automatic control, volume 43,

number 4, pages 573–579. Institute of electrical and electronics engineers (IEEE), New

York, New York, USA, 1998. (Cited on page 26).

[EAM95] R.J. Elliott, L. Aggoun, and J.B. Moore. Hidden Markov models: estimation and control,

volume 29 of Applications of mathematics: stochastic modelling and applied probability.

Springer-Verlag, 1995. (Cited on page 157).

[EB00] M.H.C. Everdij and H.A.P. Blom. Piecewise deterministic Markov processes represented

by dynamically coloured Petri nets. Technical publication TP-2000-428, National

Aerospace Laboratory NLR, Amsterdam, The Netherlands, 2000. (Cited on page 196).

[EB02] M.H.C. Everdij and H.A.P. Blom. How to specify a DCPN instantiation. Memorandum

LL-2002-008, National Aerospace Laboratory NLR, Amsterdam, The Netherlands, 2002.

(Cited on page 197).

BIBLIOGRAPHY 167

[EB03] M.H.C. Everdij and H.A.P. Blom. Petri nets and hybrid state Markov processes in a power-

hierarchy of dependability models. In Proceedings IFAC conference on analysis and design

of hybrid system (ADHS), Saint-Malo, Brittany, France, pages 355–360, June 2003. (Cited

on pages 5 and 156).

[EB05] M.H.C. Everdij and H.A.P. Blom. Piecewise deterministic Markov processes represented

by dynamically coloured Petri nets. In S. Jacka, editor, Stochastics: an international

journal of probability and stochastic processes, volume 77, number 1, pages 1–29. Taylor

& Francis, February 2005. (Cited on pages 6, 38, 156, and 196).

[EB06] M.H.C. Everdij and H.A.P. Blom. Hybrid Petri nets with diffusion that have into-mappings

with generalised stochastic hybrid processes. In H.A.P. Blom and J. Lygeros, editors,

Stochastic hybrid systems: theory and safety critical applications, volume 337 of Lectures

notes in control and information sciences (LNCIS), pages 31–63. Springer, 2006. (Cited

on pages 6, 38, 78, 102, 156, and 196).

[EB08] M.H.C. Everdij and H.A.P. Blom, editors. Safety methods database. Maintained since

2004 by National Aerospace Laboratory NLR, The Netherlands, 2008. http://www.nlr.nl/-

documents/flyers/SATdb.pdf. (Cited on page 2).

[EB10a] M.H.C. Everdij and H.A.P. Blom. Bisimulation relations between automata, stochastic

differential equations and Petri nets. In M. Bujorianu and M. Fisher, editors, Proceedings

workshop on Formal Methods for Aerospace (FMA), volume 20 of Electronic Proceedings

in Theoretical Computer Science (EPTCS), pages 1–15, 2010. (Cited on pages 7, 156,

and 196).

[EB10b] M.H.C. Everdij and H.A.P. Blom. Hybrid state Petri nets which have the analysis

power of stochastic hybrid systems and the formal verification power of automata. In

Pawel Pawlewski, editor, Petri nets: applications, chapter 12, pages 227–252. IN-

TECH, 2010. ISBN 978-953-307-047-6, http://sciyo.com/books/show/title/petri-nets-

applications. (Cited on pages 6, 7, 156, and 196).

[EBB07] M.H.C. Everdij, H.A.P. Blom, and G.J. Bakker. Modelling lateral spacing and separation

for airborne separation assurance using Petri nets. Simulation: transactions of the society

for modeling and simulation international, special issue on air transportation, 83(5):401–

414, May 2007. (Cited on page 149).

[EBK97] M.H.C. Everdij, H.A.P. Blom, and M.B. Klompstra. Dynamically coloured Petri nets

for air traffic management safety purposes. In M. Papageorgiou and A. Pouliezos, editors,

168 BIBLIOGRAPHY

Proceedings 8th IFAC symposium on transportation systems, Chania, Greece, pages 184–

189, June 1997. (Cited on pages 137 and 196).

[EK86] S.N. Ethier and T.G. Kurtz. Markov processes, characterization and convergence. Wiley

series in probability and mathematical statistics. John Wiley & Sons, New York, 1986.

(Cited on pages 159 and 179).

[EKB96] M.H.C. Everdij, M.B. Klompstra, and H.A.P. Blom. Development of mathematical

techniques for ATM safety analysis. MUFTIS work package report 3.2, Final report on

safety model, Part 2 NLR-TR-96197, National Aerospace Laboratory NLR, Amsterdam,

The Netherlands, 1996. (Cited on page 195).

[EKBF96] M.H.C. Everdij, M.B. Klompstra, H.A.P. Blom, and O.N. Fota. Evaluation of hazard

analysis techniques for application to en route ATM. MUFTIS work package report 3.2,

Final report on safety model, Part 1 NLR-TR-96196, National Aerospace Laboratory NLR,

Amsterdam, The Netherlands, 1996. (Cited on page 195).

[EKBK06] M.H.C. Everdij, M.B. Klompstra, H.A.P. Blom, and B. Klein Obbink. Compositional

specification of a multi-agent system by stochastically and dynamically coloured Petri nets.

In H.A.P. Blom and J. Lygeros, editors, Stochastic hybrid systems: theory and safety

critical applications, volume 337 of Lectures notes in control and information sciences

(LNCIS), pages 325–350. Springer, 2006. (Cited on pages 6, 117, and 197).

[Ell82] R.J. Elliott. Stochastic calculus and applications, volume 18 of Applications of mathem-

atics: Stochastic modelling and applied probability. Springer-Verlag, 1982. (Cited on

page 157).

[EN94] J. Esparza and M. Nielsen. Decidability issues for Petri nets. In Petri net newsletter,

volume 47, pages 5–23. Gesellschaft für Informatik (GI), special interest group on Petri

nets and related system models, Bonn, Germany, 1994. (Cited on pages 18 and 19).

[Esp98] J. Esparza. Decidability and complexity of Petri net problems - an introduction. In

W. Reisig and G. Rozenberg, editors, Lectures on Petri nets I: basic models, volume

1491 of Lecture notes in computer science (LNCS), pages 374–428. Springer-Verlag, 1998.

(Cited on pages 18 and 19).

[FAP97] M. Fernandes, M. Adamski, and A.J. Proença. VHDL generation from hierarchical

Petri net specifications of parallel controller. IEE proceedings: computers and digital

techniques, 144:127–137, March 1997. (Cited on pages 29, 106, 109, and 110).

BIBLIOGRAPHY 169

[FG97] H. Fleischhack and B. Grahlmann. A Petri net semantics for B(PN)2 with procedures.

In Proceedings 2nd workshop on parallel and distributed software engineering (PDSE),

Boston, Massachusetts, USA, IEEE computer society, pages 15–27, May 1997. (Cited on

page 29).

[FKK97] N.O. Fota, M. Kaâniche, and K. Kanoun. A modular and incremental approach for

building complex stochastic Petri net models. In Proceedings 1st international conference

on mathematical methods in reliability (MMR), Bucharest, Romania, pages 151–158,

September 1997. Rapport LAAS No97224. (Cited on pages 30, 106, 109, and 110).

[FKK98] N.O. Fota, M. Kaâniche, and K. Kanoun. Dependability evaluation of an air traffic

control computing system. In Proceedings 3rd IEEE international computer performance

and dependability symposium (IPDS), Durham, North Carolina, USA, pages 206–215,

1998. (Cited on page 32).

[FM94] M. Felder and A. Morzenti. A temporal logic approach to implementation and refinement

of timed Petri nets. In D. Gabbay, editor, Proceedings 1st international conference on

temporal logic (ICTL), Bonn, Germany, pages 365–381. Springer-Verlag, New York, July

1994. (Cited on page 24).

[FN84] G. Florin and S. Natkin. Définition formelle des réseaux de Petri stochastiques. Research

report, Conservatoire national des arts et métiers (CNAM), Paris, France, 1984. (Cited on

page 24).

[Frö04] S. Fröschle. Decidability and coincidence of equivalences for concurrency. PhD thesis,

Laboratory for foundations of computer science, School of informatics, University of

Edinburgh, UK, 2002, Graduation date: May 2004. (Cited on page 21).

[GAM91] M.K. Ghosh, A. Arapostathis, and S.I. Marcus. An optimal control problem arising in

flexible manufacturing systems. In Proceedings 30th IEEE conference on decision and

control (CDC), Brighton, UK, pages 1884–1849, 1991. (Cited on page 3).

[Gen86] H.J. Genrich. Predicate/transition nets. In W. Brauer, W. Reisig, and G. Rozenberg,

editors, Petri nets: central models and their properties, advances in Petri nets 1986, part

I, proceedings of an advanced course, Bad Honnef, Germany, volume 254 of Lecture notes

in computer science (LNCS), pages 207–247. Springer-Verlag, 1986. (Cited on page 22).

[Giu06] A. Giua. Bibliography on hybrid Petri nets, 2006. http://bode.diee.unica.it/ ∼hpn/. (Cited

on page 25).

170 BIBLIOGRAPHY

[GL81] H.J. Genrich and K. Lautenbach. System modelling with high-level Petri nets. Theoretical

computer science, special issue on semantics of concurrent computation, 13:109–136,

1981. (Cited on page 22).

[GSB99] M. Gribaudo, M. Sereno, and A. Bobbio. Fluid stochastic Petri nets: an extended

formalism to include non-markovian models. In Proceedings 8th international workshop

on Petri nets and performance models (PNPM99), Zaragoza, Spain, pages 74–81, October

1999. (Cited on page 26).

[GU96] A. Giua and E. Usai. High-level hybrid Petri nets: a definition. In Proceedings 35th IEEE

conference on decision and control (CDC), Kobe, Japan, pages 148–150, 1996. (Cited on

page 27).

[GU98] A. Giua and E. Usai. Modeling hybrid systems by high-level Petri nets. European journal

of automation APII-JESA, 32(9–10):1209–1231, December 1998. (Cited on page 27).

[GV03] C. Girault and R. Valk, editors. Petri nets for systems engineering. A guide to modeling,

verification, and applications. Springer-Verlag, Berlin Heidelberg New York, 2003. (Cited

on page 10).

[Haa02] P.J. Haas. Stochastic Petri nets, modelling, stability, simulation. Springer-Verlag, New

York, 2002. (Cited on pages 23, 24, and 25).

[Hac75] M. Hack. Decidability questions for Petri nets. PhD thesis, Massachusetts institute of

technology (MIT), department of electrical engineering, Cambridge, Massachusetts, USA,

December 1975. (Cited on pages 19 and 20).

[Hac76] M. Hack. Petri net languages. Technical report MIT-LCS-TR-159, Massachusetts institute

of technology (MIT), laboratory for computer science, Cambridge, Massachusetts, USA,

March 1976. (Cited on page 138).

[Han93] H. Hanisch. Analysis of place/transition nets with timed arcs and its application to batch

process control. In M. Ajmone Marsan, editor, Proceedings 14th international conference

on application and theory of Petri nets (ATPN), Chicago, Illinois, USA, volume 691 of

Lecture notes in computer science (LNCS), pages 282–299. Springer-Verlag, 1993. (Cited

on page 24).

[Har87] D. Harel. Statecharts: a visual formalism for complex systems. Science of computer

programming, 8:231–274, 1987. (Cited on pages 106 and 111).

BIBLIOGRAPHY 171

[HGG07] H. Herencia-Zapana, O.R. González, and W.S. Gray. Dynamically colored Petri net

representation of nonlinear sampled-data systems with embedded recovery algorithms.

In Proceedings 46th IEEE conference on decision and control (CDC), New Orleans,

Louisiana, USA, pages 97–102, 2007. (Cited on page 137).

[HJS90] P. Huber, K. Jensen, and R.M. Shapiro. Hierarchies in coloured Petri nets. In

G. Rozenberg, editor, Advances in Petri nets, volume 483 of Lecture notes in computer

science (LNCS), pages 313–341. Springer-Verlag, Berlin Heidelberg New York, 1990.

Also Chapter 7 in: K. Jensen and G. Rozenberg, editors, High-level Petri nets; theory

and application, Springer-Verlag, 1991. (Cited on pages 28, 106, and 110).

[HLS00] J. Hu, J. Lygeros, and S. Sastry. Towards a theory of stochastic hybrid systems. In

N. Lynch and B.H. Krogh, editors, Proceedings 3rd international workshop on hybrid

systems: computation and control (HSCC), Pittsburgh, Pennsylvania, USA, volume 1790

of Lecture notes in computer science (LNCS), pages 160–173. Springer Verlag, April 2000.

(Cited on page 3).

[HYB05] HYBRIDGE project website. Maintained by National Aerospace Laboratory NLR,

Amsterdam, The Netherlands, 2005. http://hosted.nlr.nl/public/hosted-sites/hybridge/.

(Cited on page 196).

[IEBB09] E. Itoh, M.H.C. Everdij, G.J. Bakker, and H.A.P. Blom. Speed control for airborne

separation assistance in continuous descent arrivals. In Proceedings 9th AIAA Aviation

Technology, Integration, and Operations Conference (ATIO), Hilton Head, South Carolina,

USA, September 2009. (Cited on page 137).

[ITWM08] Netherlands Inspection Transport and Water Management. Civil aviation safety

data 1993–2007. Den Haag, The Netherlands, 2008. http://www.verkeerenwaterstaat.

nl/Images/200810073%20bijlage.doc_tcm195-227432.pdf. (Cited on page 1).

[JE02] J.W. Janneck and R. Esser. Higher-order Petri net modelling - techniques and applications.

In Proceedings 23rd international conference on application and theory of Petri nets

(ATPN) – workshop on software engineering and formal methods, Adelaide, Australia,

volume 2360 of Lecture notes in computer science (LNCS). Springer-Verlag, 2002. (Cited

on page 29).

[Jen81] K. Jensen. Coloured Petri nets and the invariant method. Theoretical computer science,

14:317–336, 1981. (Cited on page 22).

[Jen90] K. Jensen. Coloured Petri nets: a high-level language for system design and analysis. In

G. Rozenberg, editor, Advances in Petri nets, volume 483 of Lecture notes in computer

172 BIBLIOGRAPHY

science (LNCS), pages 342–416. Springer-Verlag, Berlin Heidelberg New York, 1990.

(Cited on pages 22 and 28).

[Jen92] K. Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use,

volume 1. Springer-Verlag, 1992. (Cited on page 36).

[KB05a] J. Krystul and H.A.P. Blom. Generalised stochastic hybrid processes as strong solutions

of stochastic differential equations. Technical report, University of Twente and National

Aerospace Laboratory NLR, June 2005. (Cited on pages 3 and 82).

[KB05b] J. Krystul and H.A.P. Blom. Sequential Monte Carlo simulation of rare event probability

in stochastic hybrid systems. In P. Horacek, M. Simandl, and P. Zitek, editors, Proceedings

16th IFAC world congress, 4-8 July 2005, Prague, Czech Republic. Elsevier, Oxford, 2005.

(Cited on page 159).

[KBB07] J. Krystul, H.A.P. Blom, and A. Bagchi. Stochastic differential equations on hybrid state

spaces. In C.G. Cassandras and J. Lygeros, editors, Stochastic hybrid systems, number 24

in Control engineering series, pages 15–45. Taylor and Francis/CRC Press, 2007. (Cited

on pages 71 and 157).

[KD99] D. Karabeg and R. Djurhuus. Algoritmer og effektivitet. Kompendium nr. 51 til IN210,

Universitetet i Oslo, Institutt for informatikk, August 1999. (Cited on pages 17 and 18).

[Kel75] R.M. Keller. A fundamental theorem of asynchronous parallel computation. In T.Y. Feng,

editor, Parallel processing, volume 24 of Lecture notes in computer science (LNCS), pages

102–112. Springer-Verlag, 1975. (Cited on page 19).

[Kin97] E. Kindler. A compositional partial order semantics for Petri net components. In P. Azema

and G. Balbo, editors, Proceedings 18th international conference on application and

theory of Petri nets (ATPN), Toulouse, France, volume 1248 of Lecture notes in computer

science (LNCS). Springer-Verlag, June 1997. (Cited on pages 29, 106, 109, and 110).

[KL00] S. Kurkovsky and R. Loganantharaj. Modeling of, and reasoning with recurrent events

with imprecise durations. In Proceedings 13th international conference on the industrial

and engineering application of artificial intelligence and expert systems (IEA/AIE), New

Orleans, Louisiana, USA, pages 272–283, 2000. (Cited on page 23).

[Kle05] B. Klein Obbink. Description of advanced operation: free flight. Hybridge report, D9.1,

March 2005. http://hosted.nlr.nl/public/hosted-sites/hybridge/. (Cited on page 150).

[KM69] R.M. Karp and R.E. Miller. Parallel program schemata. Journal of computer and system

sciences, 3(2):147–195, 1969. (Cited on page 18).

BIBLIOGRAPHY 173

[KO00] K. Kanoun and M. Ortalo-Borrel. Fault-tolerant system dependability-explicit modeling

of hardware and software component-interactions. IEEE transactions on reliability,

49(4):363–376, December 2000. (Cited on page 32).

[Koo05] H.-Y.B. Koo. A meta-language for systems architecting. PhD thesis, Massachusetts

institute of technology (MIT), engineering systems division, Cambridge, Massachusetts,

USA, January 2005. (Cited on page 18).

[Kos82] S.R. Kosaraju. Decidability of reachability in vector addition systems. In Proceedings

14th ACM symposium on theory of computing (STOC), San Francisco, California, USA,

pages 267–281. ACM press, 1982. (Cited on page 19).

[Kry06] J. Krystul. Modelling of stochastic hybrid systems with applications to accident risk

assessment. PhD thesis, University of Twente, The Netherlands, September 2006. (Cited

on pages 3, 71, 82, 157, and 159).

[LAD91] J. Le Bail, H. Alla, and R. David. Hybrid Petri nets. In Proceedings 1st European control

conference (ECC), Grenoble, France, pages 1472–1477, 1991. (Cited on page 26).

[Lip76] R.J. Lipton. The reachability problem requires exponential space. Research report 62,

Yale university, department of computer science, New Haven, Connecticut, USA, 1976.

(Cited on page 19).

[LJSE99] J. Lygeros, K.H. Johansson, S. Sastry, and M. Egerstedt. On the existence of executions

of hybrid automata. In Proceedings 38th IEEE conference on decision and control (CDC),

Phoenix, Arizona, USA, pages 2249–2254, 1999. (Cited on page 35).

[LM76] J.P. Lepeltier and B. Marchal. Problème des martingales et équations différentielles

stochastiques associées à un opérateur intégro-différentiel. Annales de l’Institute Henri

Poincaré, Section B - XII(1):43–103, 1976. (Cited on page 82).

[LT05] C. Lesire and C. Tessier. Particle Petri nets for aircraft procedure monitoring under

uncertainty. In G. Ciardo and P. Darondeau, editors, Proceedings 26th international

conference on application and theory of Petri nets (ATPN), Miami, Florida, USA, volume

3536 of Lecture notes in computer science (LNCS), pages 329–348. Springer-Verlag, June

2005. (Cited on pages 27 and 32).

[Mad02] N. Madras. Lectures on Monte Carlo methods, volume 16 of Fields institute monographs,

Fields institute for research in mathematical sciences. American Mathematical Society,

2002. (Cited on page 36).

174 BIBLIOGRAPHY

[May81] E.W. Mayr. An algorithm for the general Petri net reachability problem (preliminary

version). In Proceedings 13th annual ACM symposium on theory of computing, Milwaukee,

Wisconsin, USA, pages 238–246. Association for computing machinery, May 1981. (Cited

on page 19).

[May84] E.W. Mayr. An algorithm for the general Petri net reachability problem. SIAM journal of

computing, 13(3):441–460, August 1984. (Cited on page 19).

[MF76] P.M. Merlin and D.J. Farber. Recoverability of communication protocols: implications of

a theoretical study. IEEE transactions on communications, 24(9):1036–1043, September

1976. (Cited on page 23).

[MFT00] J.K. Muppala, R.M. Fricks, and K.S. Trivedi. Techniques for system dependability

evaluation. In W. Grasman, editor, Computational probability, pages 445–480. Kluwer

academic publishers, The Netherlands, 2000. (Cited on pages 4, 5, 65, 103, and 156).

[MM81] E.W. Mayr and A.R. Meyer. The complexity of the finite containment problem for Petri

nets. In Journal of the ACM, volume 28, number 3, pages 561–576. ACM press, 1981.

(Cited on page 19).

[Mol81] M.K. Molloy. On the integration of delay and throughput measures in distributed

processing models. PhD thesis, University of California, Los Angeles, California, USA,

1981. (Cited on pages 23 and 24).

[MT94] M. Malhotra and K.S. Trivedi. Power-hierarchy of dependability-model types. IEEE

transactions on reliability, R-43(3):493–502, 1994. (Cited on pages 4, 5, 65, 103, and 156).

[Mur89] T. Murata. Petri nets: properties, analysis and applications. Proceedings of the IEEE,

77(4):541–580, April 1989. (Cited on pages 10, 11, 18, 19, and 20).

[Nat80] S. Natkin. Les réseaux de Petri stochastiques. Thèse de docteur ingénieur, CNAM, Paris,

France, June 1980. (Cited on page 23).

[NH04] E. Németh and K.M. Hangos. Multi-scale process model description by generalized

hierarchical CPN models. Research report SCL-002/2004, Process control research

group, MTA SZTAKI computer and automation research institute, Hungarian academy

of sciences, Hungary, 2004. (Cited on page 28).

[NN73] J.D. Noe and G.J. Nutt. Macro E-nets representation of parallel systems. IEEE

transactions on computers, 31(9):718–727, August 1973. (Cited on page 23).

BIBLIOGRAPHY 175

[NVT+10] F. Netjasov, A. Vidosavljevic, V. Tosic, M.H.C. Everdij, and H.A.P. Blom. Stochas-

tically and dynamically coloured Petri net model of ACAS operations. In D. Zellweger,

V. Duong, and D. Lovell, editors, Proceedings 4th international conference on research in

air transportation (ICRAT), Budapest, Hungary, June 2010. (Cited on page 137).

[Obe06] H. Oberheid. A coloured Petri net model of cooperative arrival planning in air traffic

control. In K. Jensen, editor, Proceedings of the 7th workshop and tutorial on practical

use of coloured Petri nets and the CPN tools, department of computer science, University

of Aarhus, Denmark, volume PB-579, pages 177–196, 2006. (Cited on page 32).

[OCBB07] Í.R. de Oliveira, P.S. Cugnasca, H.A.P. Blom, and G.J. Bakker. Modelling and

estimation of separation criteria for airborne time-based spacing operation. In Proceedings

7th air traffic management (ATM) seminar, Barcelona, Spain, 2007. paper 137. (Cited on

page 137).

[OHC06] Í.R. de Oliveira, R.M. Honda, and P.S. Cugnasca. Risk analysis of airborne spacing in

approach sequencing. Journal of the Brazilian air transportation research society, 2(2):63–

81, 2006. (Cited on page 137).

[Øk02] B. Øksendal. Stochastic differential equations. An introduction with applications.

Springer-Verlag, fifth edition, corrected printing edition, 2002. (Cited on pages 48 and 62).

[OÜRS07] H.O. Oberheid, M. Übbing-Rumke, and D. Söffker. Cooperative arrival management

in air traffic control - a coloured Petri net model of sequence planning. Software tools for

technology transfer, 2007. (Cited on page 32).

[Ovi03] B.A. Oving. VALILEO 2002, volume 3: GNSS dependability tool Part 1: Requirements

identification on DCPN-based modelling for dependability assessment. Technical Report

NLR-CR-2002-456-VOL-3-PT-1, National Aerospace Laboratory NLR, January 2003.

(Cited on page 159).

[Pad99] J. Padberg. The "Petri Net Baukasten": an application-oriented Petri net technology. In

H. Weber, H. Ehrig, and W. Reisig, editors, Proceedings international colloquium on Petri

net technologies for modelling communication based systems. Fraunhofer Gesellschaft

ISST, October 1999. (Cited on page 11).

[PC04] M. Prandini and M.C. Campi. Reachability analysis for probabilistic hybrid systems

with application to air traffic management. Hybridge report, D3.1, November 2004.

http://hosted.nlr.nl/public/hosted-sites/hybridge/. (Cited on page 159).

176 BIBLIOGRAPHY

[Pet62] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle

Mathematik, Bonn, Germany, 1962. Schriften des IIM, number 2. (Cited on page 9).

[Pet66] C.A. Petri. Communication with automata. Technical report volume 1, number RADC-

TR-65-377, New York: Griffiss air force base, 1966. English translation. (Cited on page 9).

[Rac78] C. Rackoff. The covering and boundedness problem for vector addition systems.

Theoretical computer science, 6:223–231, 1978. (Cited on page 19).

[Ram73] C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri nets. PhD

thesis, Massachusetts institute of technology (MIT), Cambridge, Massachusetts, USA,

1973. (Cited on page 23).

[RH80] C.V. Ramamoorthy and G.S. Ho. Performance evaluation of asynchronous concurrent

systems using Petri nets. IEEE transactions on software engineering, 6(5):440–449,

September 1980. (Cited on page 23).

[RH10] H. Rölke and F. Heitmann, editors. Petri nets world, website, maintained by the TGI

(Theoretische Grundlagen der Informatik) group at the University of Hamburg, Germany,

2010. http://www.informatik.uni-hamburg.de/TGI/PetriNets/. (Cited on pages 4, 9, 10,

and 159).

[Ric53] H.G. Rice. Classes of recursively enumerable sets and their decision problems. Transac-

tions American mathematics society, 74:358–366, 1953. (Cited on page 18).

[She05] R.J. Sheehan. The ICICLE (interaction computing in a constructionist learning environ-

ment) programming environment for children. PhD thesis, University of Auckland, New

Zealand, 2005. (Cited on page 18).

[Sif77] J. Sifakis. Use of Petri nets for performance evaluation. In H. Beilner and E. Gelenbe,

editors, Proceedings 3rd international symposium IFIP, W.G. 7.3, Measuring, modelling

and evaluating computing systems, Bonn-Bad Godesberg, Germany, pages 75–93. Elsevier

science, Amsterdam, 1977. (Cited on page 23).

[Sih05] S.K. Sihombing. Dynamically coloured Petri nets: properties and their decidability.

Master’s thesis, University of Twente, faculty of engineering mathematics, Enschede, The

Netherlands, July 2005. (Cited on page 138).

[SR02] M. Silva and L. Recalde. Petri nets and integrality relaxations: a view of continuous Petri

nets. IEEE transactions on systems, man, and cybernetics, part C, 32(4):314–327, 2002.

(Cited on page 26).

BIBLIOGRAPHY 177

[Str05] S.N. Strubbe. Compositional modelling of stochastic hybrid systems. PhD thesis,

University of Twente, The Netherlands, December 2005. (Cited on page 66).

[Sud97] T.A. Sudkamp. Languages and machines: an introduction to the theory of computers.

Addison-Wesley Longman publishing Co., Inc., Boston, Massachusetts, USA, 2nd edition,

1997. (Cited on page 16).

[SV05a] S.N. Strubbe and A.J. Van der Schaft. Bisimulation for communicating piecewise

deterministic Markov processes (CPDPs). In M. Morari and L. Thiele, editors, Proceedings

8th international workshop on hybrid systems: computation and control (HSCC), Zürich,

Switzerland, volume 3414 of Lecture notes in computer science (LNCS), pages 623–639,

2005. (Cited on page 66).

[SV05b] S.N. Strubbe and A.J. Van der Schaft. Stochastic semantics for communicating piecewise

deterministic Markov processes. In Proceedings 44th IEEE conference on decision and

control, and the European control conference, Seville, Spain, pages 6103–6108, December

2005. (Cited on page 66).

[TK93] K.S. Trivedi and V.G. Kulkarni. FSPNs: fluid stochastic Petri nets. In M. Ajmone Marsan,

editor, Proceedings 14th international conference on application and theory of Petri nets

(ATPN), Chicago, Illinois, USA, volume 691 of Lecture notes in computer science (LNCS),

pages 24–31. Springer-Verlag, Heidelberg, 1993. (Cited on page 26).

[TTV06] G.J. Tsinarakis, N.C. Tsourveloudis, and K.P. Valavanis. Modeling, analysis, synthesis,

and performance evaluation of multioperational production systems with hybrid timed Petri

nets. IEEE transactions on automation science and engineering, 3(1):29–46, January 2006.

(Cited on pages 26 and 106).

[Tur36] A.M. Turing. On computable numbers, with an application to the Entscheidungsproblem.

In Proceedings London mathematical society, pages 230–265, 1936. (Cited on page 17).

[Van04] A.J. Van der Schaft. Equivalence of dynamical systems by bisimulation. IEEE

transactions on automatic control, 49(12):2160–2172, 2004. (Cited on pages 65 and 158).

[VJMV04] E. Villani, F. Junqueira, P.E. Miyagi, and R. Valette. Petri net and OO for the modular

analysis of an aircraft landing system. In Proceedings 17th international congress of

mechanical engineering, São Paolo, Brazil, ABCM symposium series in mechatronics,

pages 570–579, 2004. (Cited on pages 28 and 32).

[VN92] N. Viswanadham and Y. Narahari. Performance modeling of automated manufacturing

systems. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1992. (Cited on page 20).

178 BIBLIOGRAPHY

[WER+03] H. Weber, H. Ehrig, W. Reisig, A. Borusan, S. Lembke, J. Dehnert, M. Weber,

A. Martens, J. Padberg, C. Ermel, and A. Qemali. The Petri Net Baukasten of the DFG

Forschergruppe Petri net technology. In H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber,

editors, Petri net technology for communication-based systems, volume 2472 of Lecture

notes in computer science (LNCS), pages 1–21. Springer-Verlag, November 2003. (Cited

on page 11).

[Wie96a] R. Wieting. Hybrid high-level nets. In J.M. Charnes, D.J. Morrice, D.T. Brunner, and

J.J. Swain, editors, Proceedings 28th winter simulation conference, Coronado, California,

USA, pages 848–855, December 1996. (Cited on page 27).

[Wie96b] R. Wieting. Modeling and simulation of hybrid systems using hybrid high-level nets.

In A.G. Bruzzone and E.J.H. Kerkhoffs, editors, Proceedings 8th European simulation

symposium (ESS), Genoa, Italy, pages 158–162, October 1996. (Cited on page 27).

[Wik10] Wikipedia, the Free Encyclopedia, 2010. http://en.wikipedia.org/wiki/. (Cited on

pages 16, 17, and 18).

[YLB95] Y.Y. Yang, D.A. Linkens, and S.P. Banks. Modelling of hybrid systems based on

extended coloured Petri nets. In P. Antsaklis, S. Sastry, W. Kohn, and A. Nerode, editors,

Hybrid systems II, volume 999, pages 509–528. Springer-Verlag, December 1995. (Cited

on pages 22, 23, and 27).

[Zen85] A. Zenie. Coloured stochastic Petri nets. In Proceedings international workshop on timed

Petri nets, Torino, Italy, pages 262–271. IEEE computer society press, July 1985. (Cited

on pages 22 and 25).

Appendix A

Preliminaries on stochastic processes

This thesis assumes a background knowledge in stochastic processes. There are many good

textbooks that give an introduction to these processes, including [Dav93], [EK86], and [Bag93].

This appendix provides a brief overview of the main terminology and notation used.

Random variables, probability, and expectation

• Ω is a set, usually referred to as the sample space.

• ℑ is a collection of subsets of Ω, with the requirement that it is a σ-algebra on Ω. This means

that

– ∅ ∈ ℑ,

– if A ∈ ℑ then also Ω \ A ∈ ℑ and

– if A1, A2, . . . ∈ ℑ then ∪∞
i=1Ai ∈ ℑ.

Here, ∅ denotes the empty set. Note that with the requirements above, also Ω ∈ ℑ. If A is a

member of ℑ it is called measurable. (Ω,ℑ) is referred to as a measurable space.

• If S is a collection of subsets of Ω, then the σ-algebra generated by S and referred to as σ(S)

is the smallest σ-algebra on Ω that contains all elements of S. Special cases are:

– The Borel σ-algebra on R, referred to as B(R), is the smallest σ-algebra that contains

all open intervals.

– The Borel σ-algebra on Rn, referred to as B(Rn), is the smallest σ-algebra that contains

all n-dimensional open intervals.

– The Borel σ-algebra on E, referred to as B(E), is the smallest σ-algebra that contains

all open subsets of E.

180 Preliminaries on stochastic processes

A Borel subset is an element of a Borel σ-algebra. A σ-algebra is separable if it can be

generated by a countable collection of sets. A Borel measurable space is denoted (E,B(E)).

• A measure on (Ω,ℑ) is a function µ : ℑ → R+ such that

– µ{∅} = 0,

– if A1, A2, . . . ∈ ℑ are pairwise disjoint, i.e., Ai ∩ Aj = ∅ for i 6= j, then µ{∪∞
i=1Ai} =

∑∞
i=1 µ{Ai}.

(Ω,ℑ, µ) is referred to as a measure space.

Special cases are:

– A probability measure on (Ω,ℑ) is a measure P : ℑ → [0, 1] for which P{Ω} = 1.

(Ω,ℑ,P) is referred to as a probability space.

– A Borel measure is any measure on a Borel measurable space, i.e., any measure on

(E,B(E)).

– The Lebesgue measure µL is the unique measure that is constructed as follows: For any

subset B of R, we define an outer measure µ∗
L by: µ∗

L{B} = inf{µ∗{M} | M ⊇ B},

where M is a countable union of intervals and µ∗{M} is the sum of the lengths of these

intervals. Then a set A is Lebesgue measurable if for all sets B, µ∗
L(B) = µ∗

L{A∩B}+
µ∗
L{B\A}. The Lebesgue measurable sets form a σ-algebra, and the Lebesgue measure

µL is defined by µL{A} , µ∗
L{A} for any Lebesgue measurable set A.

For n-dimensional intervals, in the definition above M is a countable union of products

of intervals and µ∗{M} is the sum of the product of the lengths of these intervals.

• If (Ω1,ℑ1) and (Ω2,ℑ2) are two measurable spaces then a function f : Ω1 → Ω2 is called

measurable if {ω1 ∈ Ω1 | f(ω1) ∈ A} is in ℑ1 for every A ∈ ℑ2.

A function g : Rn → R is Borel-measurable if every set of the form {x ∈ Rn | g(x) ∈ B(R)}
belongs to B(Rn).

• A measurable setA is called a µ-null-set if µ{A} = 0. A measure space (Ω,ℑ, µ) is complete

if every subset of a µ-null set is measurable. The Lebesgue measure (or, more precisely, the

Lebesgue measure space) is complete whereas the Borel measure is not. An event A is P-

almost sure if P{A} = 1.

• A random variable on (Ω,ℑ) is a measurable function from (Ω,ℑ) to (R,B(R)). In other

terms, a random variable is a function X : Ω → R such that {ω ∈ Ω | X(ω) ≤ x} ∈ ℑ
for every x ∈ R. A random vector is a vector X = (X1, . . . , Xn)

′ such that Xi is a random

181

variable for each i. The probability that X takes on values in a set A is given by P{X ∈
A} , P{ω ∈ Ω | X(ω) ∈ A}.

• The probability distribution function FX : R → [0, 1] of a random variable X is given by

FX(x) = P{ω ∈ Ω | X(ω) ≤ x} (or by FX(x) = P{X ≤ x} for short).

• The survivor function ΓX : R → [0, 1] of a random variable X is given by ΓX(x) = P{X >

x}. If X represents time then the survivor function represents the probability that X occurs

at least after time x (it survives until at least time x). Note that ΓX(x) = 1− FX(x).

• If f : R → R is a function and ifX is a random variable with probability distribution function

FX then the expectation of f(X) is given by

E{f(X)} =

∫ ∞

−∞
f(x)dFX(x)

• A random variable X on a probability space (Ω,ℑ,P) is integrable if
∫
Ω
|X(ω)|dP(ω) exists

and is finite.

Stochastic processes

• A stochastic process with index set T and state space (E,B(E)) (a Borel measurable space)

defined on a probability space (Ω,ℑ,P) is a function X defined on T × Ω with values in

E such that for each t ∈ T, X(t, ·) : Ω → E is an E-valued random variable (or random

vector), i.e., {ω | X(t, ω) ∈ B} ∈ ℑ for every B ∈ B(E).
Throughout this appendix, we take T = R+ = [0,∞), i.e., the positive time line. Generally,

X(t, ω) is denoted as Xt(ω) and X(t, ·) is denoted as X(t) or as Xt.

X is measurable if X : [0,∞)× Ω → E is B[0,∞)× ℑ-measurable.

X is continuous if for every ω ∈ Ω, X(·, ω) is continuous. Similar definitions apply for

almost surely continuous, right continuous, left continuous.

The function X(·, ω) is called the sample path of the process at ω.

• A collection {ℑt} = {ℑt, t ∈ T} of σ-algebras of sets in ℑ is a filtration if ℑt ⊂ ℑt+s

for t, s ∈ T. Intuitively, ℑt corresponds to the information known to an observer at time

t. We say {ℑt} is complete if (Ω,ℑ,P) is complete and {N ∈ ℑ | P(N) = 0} ⊂ ℑ0.

For a process X , the natural filtration {ℑX
t } is defined by the filtration induced by X , i.e.,

ℑX
t = σ(X(s) | s ≤ t), i.e., ℑX

t is the information obtained by observing X up to time t.

A process X is adapted to a filtration {ℑt} (or X is {ℑt}-adapted) if X(t) is ℑt-measurable

182 Preliminaries on stochastic processes

for each t ≥ 0. This means that the filtration gives us enough information to find the value of

the process. Since ℑt is increasing in t, X is {ℑt}-adapted if and only if ℑX
t ⊂ ℑt for each

t ≥ 0.

(Ω,ℑ, {ℑt},P,T) is referred to as a filtered probability space or stochastic basis.

• A stopping time τ with respect to a filtration {ℑt} is a random variable τ : Ω → [0,∞) such

that {τ ≤ t} , {ω ∈ Ω | τ(ω) ≤ t} ∈ ℑt for every t ∈ T. In words, this says that we

should be able to decide on the basis of the information on the process up to time t, whether

the stopping time has passed. Or: a stopping time is a random time at which ‘something

detectable happens’.

• Let {X(t) | t ≥ 0} be a stochastic process defined on a probability space (Ω,ℑ,P) with

values in E and let ℑX
t = σ(X(s) | s ≤ t). Then X is a Markov process if P{X(t + s) ∈

A | ℑX
t } = P{X(t+ s) ∈ A | X(t)} for all s, t ≥ 0 and A ∈ B(E).

A Markov process is called time-homogeneous if P{X(t + s) ∈ A | X(t)} depends only on

s and not on t.

A Markov process has the strong Markov property if it has the Markov property for any

stopping time τ .

• A function Q(t, x, A) defined on [0,∞) × E × B(E) is a time-homogeneous transition

function if

– Q(t, x, ·) is a probability measure for fixed t ∈ [0,∞), x ∈ E

– Q(0, x, ·) = δx (unit mass at x), x ∈ E

– Q(·, ·, A) ∈ B([0,∞) × E), A ∈ B(E), where B([0,∞) × E) denotes the space of

bounded functions on [0,∞)×E

– Q(t + s, x, A) =
∫
Q(s, y, A)Q(t, x, dy), s, t ≥ 0, x ∈ E, A ∈ B(E)

• The probability measure µ given by µ(A) = P{X(0) ∈ A} is called the initial distribution of

X .

• A Wiener process relative to a right continuous filtration {ℑt} is a continuous adapted real-

valued process {Wt} such that W0 = 0 and for every t,

– E{Wt} = 0

– E{W 2
t } <∞

– Wt −Ws is independent of the σ-algebra ℑs for all s ≤ t

183

A Wiener process is said to be standard if E{W 2
t } = t. It can be shown that Wt −Ws ∼

N(0, t − s), i.e., Gaussian with mean zero and variance t − s. In addition, E{WtWs} =

min{t, s} and W is a Markov process. A h-dimensional Wiener process is an h-vector of

independent Wiener processes. A process Bt is called a standard Brownian motion if there

exists a stochastic basis, say (Ω,ℑ, {ℑt},P,T), such thatB0 is ℑ0-measurable and {Bt−B0}
is a standard Wiener process relative to {ℑt}.

• If {Xt} is a stochastic process on filtration {ℑt} then the pair {(Xt,ℑt) | t ≥ 0} is called a

martingale if E{|Xt|} < ∞ for all t ≥ 0 and E{Xt | ℑs} = Xs for all s < t. This means

that the expected value of the process at any time in the future, given all information about

the process up to the present time, is equal to the present value of the process. The stochastic

process {Xt} is called a local martingale if there exists a sequence of stopping times τk :

Ω → R+ such that the τk are almost surely increasing: P{τk < τk+1} = 1; the τk diverge

almost surely: P{τk → ∞ as k → ∞} = 1; and the stopped process Xτk
t , Xmin{t,τk}

is a martingale for every k. A stochastic process {Xt} is called a semi-martingale if its

trajectories are càdlàg1 (i.e., right-continuous and with left limits), and if it can be represented

in the form Xt =Mt+Vt, where {(Mt,ℑt)} is a local martingale and {(Vt,ℑt)} is a process

of finite variation, i.e.,
∫ t
0
dVs(ω) <∞, t > 0, ω ∈ Ω. Note that this decomposition is unique

for continuous processes, but not in general.

• A stochastic process X adapted to a filtration {ℑt} is a diffusion if it is a strong Markov

process with respect to {ℑt}, homogeneous in time, and has continuous sample paths.

• A Poisson process is a process {N(t) | t ≥ 0}, where N(t) is the number of events that have

occurred up to time t (starting from time 0), which has a Poisson distribution: P{N(t) =

k} = e−λt(λt)k

k!
, where λ is the mean number of events per unit time, sometimes referred to

as jump rate. The sojourn time between two events that are generated by a Poisson process

is exponentially distributed: If tk denotes the time of the kth event, then P{tk − tk−1 >

t} = e−λt. A Poisson Point process is a collection of Poisson random variables indexed by

intervals.

Poisson random measure

• The predicable σ-algebra is the σ-algebra ̥P on T × Ω, that is generated by all adapted

left-continuous processes. A stochastic process is predictable if it is ̥P -measurable. The

optional σ-algebra is the σ-algebra ̥O on T × Ω, that is generated by all adapted right-

1Continue à droite, limitée à gauche.

184 Preliminaries on stochastic processes

continuous processes. A stochastic process is optional if it is ̥O-measurable. Let ̥C denote

the σ-algebra on T× Ω that is generated by all adapted càdlàg processes.

• A random measure p(·; dt, dz) or p(dt, dz)(·) on R+ × Z is a family {p(ω; dt, dz) | ω ∈ Ω}
of non-negative measures on B(R+)× B(Z) such that p(ω; {0} × Z) = 0 for all ω.

• Let p be a random measure and let V (·) denote a ̥C × B(Z)-measurable mapping of Ω ×
R+ × Z into R, then define the R ∪ {∞}-valued integral process {[V ∗ p]t} as follows:

[V ∗ p]t(ω) =
{ ∫

[0,t]×Z
V (ω, s, z)p(ω; ds, dz) if this integral <∞

0 otherwise

A random measure p is called optional if the process {[V ∗ p]t} is optional for every ̥C ×
B(Z)-measurable mapping V . A random measure is called predictable if the process {[V ∗
p]t} is predictable for every ̥P ×B(Z)-measurable mapping V . A random measure is said to

be ̥P ×B(Z)-σ-finite if there exists an ̥P ×B(Z)-measurable partition (Ai) of Ω×R+×Z,

such that each [1Ai
∗ p]∞ is integrable.

• An integer valued random measure is an optional ̥P × B(Z)-σ-finite random measure

p(ω; dt, dz) satisfying:

– p(ω; {t},Z) ≤ 1, for every ω

– for each A ∈ B(R+)× B(Z), p(·;A) assumes values in N ∪ {∞}.

• The intensity measure ν(dt, dz) of an integer valued random measure is defined by ν(A) =

E{p(·;A)}, where E{·} denotes expectation. ν is said to be σ-finite if there exists a sequence

of sets Ai ∈ B(R+) × B(Z), such that Ai ↑ R+ × Z for increasing i, while ν(Ai) < ∞ for

every i.

• An extended Poisson random measure on R+ × Z relative to the filtration ℑt, is an integer-

valued random measure p(ω; dt, dz) which satisfies:

– its intensity measure ν is σ-finite,

– for every t ∈ R+ and every A ∈ B(t,∞) × B(Z), such that ν(A) < ∞, the variable

p(·;A) is independent of the σ-algebra ℑt.

The last item indicates that the memoryless property is satisfied.

• A Poisson random measure pP (·; dt, dz) is an extended Poisson random measure, the

intensity measure ν of which satisfies ν({t} × Z) = 0, for all t. A Poisson random measure

is said to be homogeneous if its intensity measure is of the form ν(dt, dz) = dt · µ̃(dz).

185

Ordinary and stochastic differential equations

• A function f : R → E is continuous if limx→y f(x) = f(y) for all y ∈ R. A function is

càdlàg if limx↓y f(x) = f(y) for all y ∈ R and f(y−) = limx↑y f(x) exists for all y ∈ R. A

function is absolutely continuous if for every interval [a, b] and ǫ > 0 there is a δ > 0 such

that
∑n

i=1(bi − ai) < δ implies
∑n

i=1 |f(bi) − f(ai)| < ǫ for any disjoint intervals (ai, bi),

i = 1, . . . , n contained in [a, b].

• A function f : Rn → Rn is called Lipschitz continuous on A ⊂ Rn if there exists a constant

L such that |f(x) − f(y)| ≤ L|x − y|, for all x, y ∈ A, where | · | is the Euclidean norm,

which is defined for x ∈ Rn as |x|2 = ∑n

i=1 x
2
i . f is called locally Lipschitz if it is Lipschitz

continuous for any compact set A.

• An ordinary differential equation is an equation Ẋ(t) = f(t, X(t)), where Ẋ(t) , dX(t)/dt

refers to the derivative of X with respect to t, and X(t) assumes values in Rn. Let f :

Rn → Rn be locally Lipschitz, then the ordinary differential equation Ẋ(t) = f(t, X(t)),

X(0) ∈ Rn has a unique solution for t ∈ [0, te), where te ≤ ∞ is the explosion time, i.e., the

first time such that limt→te |X(t)| = ∞. The explosion time is infinite if a growth condition

is satisfied, i.e., for all x, there exists K such that |f(t, x)| ≤ K(1 + |x|).

• A stochastic differential equation is an equation dXt = f(t, Xt)dt + g(t, Xt)dWt, where

{Wt} a h-dimensional standard Wiener process, and Xt assumes values in Rn. Here, f :

[0,∞)× Rn → Rn is a mapping, also named drift coefficient; g : [0,∞)× Rn → Rn×h is a

matrix-valued mapping, also named diffusion coefficient. If f and g satisfy a locally Lipschitz

condition and a growth condition, then the stochastic differential equation has a unique strong

solution (or pathwise unique solution).

Note that where necessary, the n-dimensional differential equation can be regarded as n one-

dimensional stochastic differential equations dX i
t = f i(t, Xt)dt +

∑b

j=1 g
ij(t, Xt)dW

j
t . In

addition, the time dependency can be removed by replacing Col{t, Xt} by Yt ∈ Rn+1.

• The solution of an ordinary or stochastic differential equation can be denoted by the flow

φ : [0,∞) × Rn → Rn, where φ(t, x0) equals the solution at time t when the differential

equation is initiated at state x0 at time zero, i.e., φ(t, x0) = x0 +
∫ t
0
dxt.

186 Preliminaries on stochastic processes

Index

agent, 3, 28, 105–107, 111, 128, 150, 152

air transport operation, 1–3, 31, 32, 34, 65, 71,

103, 105–109, 137, 140, 145, 149, 152

bisimilarity, 65, 158

boundedness, 18, 19, 28, 31, 61, 97, 137, 138,

156, 159

Carl Adam Petri, 9

Church-Turing thesis, 17, 138

cluster-box, 117–119, 121–127, 129, 131

combined strengths, 5, 34, 65, 72, 128, 145,

157–159

communicating piecewise deterministic Markov

process (CPDP), 66

compositional specification, 4, 10, 28–31, 66,

105–107, 128, 157, 158

concurrency, 10, 21, 155, 157, 158

continuous-time Markov chain, 4, 24–26, 31,

147–149, 156

coverability graph, 13, 15, 18, 19, 61, 62

DCPN, see dynamically coloured Petri net

dead, 19, 43

decidability, 16, 18–21, 26, 30, 137, 156, 159

deterministic and stochastic Petri net (DSPN), 4,

25, 156

DSPN, see deterministic and stochastic Petri net

duplication of transitions, 106, 107, 111–113,

115, 119, 121, 125, 127, 132, 140

dynamically coloured Petri net (DCPN), 4, 31,

33, 36, 156

boundedness, 138

decidability, 138

definition, 36

elements, 37

enabling, 40

execution, 36, 39, 43, 44, 51, 52, 54, 146

firing, 42

graph, 36, 39

liveness, 138

mapping conditions, 54

mapping into PDP, 54

pre-enabling, 40

reachability, 138

reachability graph, 55

rules on competing enablings, 41

stochastic process, 44

Turing-completeness, 138

enabling, 9, 12

equivalence, 4, 5, 31, 34, 72, 100, 105, 128, 139,

146, 148, 156

pathwise equivalence, 35, 49, 52–54, 58, 65

probabilistic equivalence, 35, 54, 58, 59, 65,

83, 85–89, 93–95, 102, 103, 128

execution, 35, 156

of DCPN, 39

of GSHS, 100

of PDP elements, 46

of SDCPN, 78

of SDCPNimt, 124

solution of HSDE, 82

188 INDEX

explosion, 47, 48, 54, 60, 62, 185

firing, 9, 12, 42, 78

forced jump, 3, 33, 45, 46, 58, 59, 63, 64, 94

general stochastic hybrid process (GSHP), 3, 71,

81, 103, 128, 157

general stochastic hybrid system (GSHS), 100

elements, 100

execution, 100–103, 158

mapping into SDCPN, 102

generalised stochastic Petri net (GSPN), 4, 24,

25, 30, 110, 138, 156

GSHP, see general stochastic hybrid process

GSHS, see general stochastic hybrid system

GSPN, see generalised stochastic Petri net

Hilbert cube, 44, 46, 48, 49, 52, 54

HSDE, see hybrid stochastic differential equa-

tion

hybrid, 3, 25, 33

hybrid stochastic differential equation (HSDE),

71, 79, 80, 139, 157

conditions, 81, 95, 144

definition, 80

elements, 80

equations, 81

mapping into SDCPN, 83

solution process, 81, 82, 103

interaction Petri net (IPN), 106, 109–111

interactions, 2, 140, 155

interconnection mapping types, 107, 111–113,

115–117, 119–122, 149, 152

into-mapping, see mapping

IPN, see interaction Petri net

Lebesgue measure, 36, 40, 42, 47, 73, 81, 180

Lipschitz continuity, 47, 60, 62, 98, 185

liveness, 19, 27, 64, 137, 138, 156, 159

local Petri net (LPN), 106, 107, 140, 146

clustering, 111, 117

interconnections, 109

specification, 107

LPN, see local Petri net

LPN-box, 109, 123

mapping

into-mapping, 54, 55, 58, 59, 83, 90, 127

one-to-one mapping, 48–50, 58, 60

marking, 12, 14, 38, 44

modelling power, 4, 5, 10, 31, 34, 65, 72, 103,

105, 128, 157, 158

non-linear properties, 2

one-to-one mapping, see mapping

ordinary Petri net, 11, 26

P/T net, see place/transition net

pathwise equivalence, see equivalence

pathwise unique, 79–82, 98, 101, 144, 185

PDP, see piecewise deterministic Markov pro-

cess

Petri net, 9

classification, 10

features, 10, 155, 157, 158

properties, 16, 18, 155, 159

piecewise deterministic Markov process (PDP),

3, 33, 44, 156

conditions, 47, 60

definition, 45

elements, 45

execution, 45–49, 54, 58

mapping into DCPN, 48

place/transition net (P/T net), 10, 11, 159

boundedness, 18

INDEX 189

coverability graph, 13

decidability, 18

definition, 12

elements, 12

enabling, 12

firing, 12

graph, 11

liveness, 19

properties, 18

reachability, 19

reachability graph, 13

Poisson random measure, 72, 73, 80, 81, 86–88,

90, 93, 94, 103, 184

power-hierarchy, 4, 65, 72, 103, 156

pre-enabling, 40

priority, 24, 29, 41, 65, 110, 138, 142

probabilistic equivalence, see equivalence

probability space, 34, 44, 45, 50, 54, 58, 72, 79,

83, 85, 89, 93, 102, 180

reachability, 13, 19, 20, 24, 30, 137, 138, 156,

159

reachability graph (RG), 13, 15, 16, 19, 24, 26,

55–57, 61–63, 66, 90, 97, 142, 159

Rice’s theorem, 18, 138

sample path, 35, 36, 45–47, 55, 59, 77, 181

SDCPN, see stochastically and dynamically col-

oured Petri net

SDCPNimt, see stochastically and dynamically

coloured Petri net with interconnection

mapping types

self-loop, 12, 58, 63

semi-martingale, 80, 82, 102, 144, 157, 158, 183

spontaneous jump, 3, 33, 45, 46, 53, 58, 59, 63,

66, 94, 101

stochastic analysis power, 4, 5, 33, 34, 65, 71,

72, 103, 105, 139, 145, 147, 156, 158

stochastic basis, 72, 79–81, 101, 182

stochastically and dynamically coloured Petri

net (SDCPN), 4, 31, 71, 77, 105, 156

definition, 77

elements, 77

enabling, 78

execution, 77–79, 85, 145, 158

firing, 78

mapping conditions, 89

mapping into GSHS, 102

mapping into HSDE, 88

pre-enabling, 78

stochastically and dynamically coloured Petri

net with interconnection mapping types

(SDCPNimt), 4, 31, 156

boundedness, 139

definition, 122

elements, 123

execution, 122, 124

mapping into HSDE, 128

mapping into SDCPN, 127

node connection rules, 124

strong Markov, 33, 48, 101, 146, 157, 159, 182

survivor function, 36, 46, 47, 53, 59, 101, 103,

181

synchronisation, 10, 21, 29, 65, 110, 155, 157,

158

token distribution, 44, 55

Turing machine, 17, 18

Turing-complete, 17, 18, 138

universal Turing machine, 17, 138

vanishing node, 24, 56, 63, 90, 142

190

Abstract

A general stochastic hybrid process (GSHP) is a mathematical formalism that covers most

of the requirements posed by the modelling of complex operations, such as time dependencies,

multi-dimensional continuous as well as discrete processes, discontinuities, randomness and model

uncertainties. In addition, it is possible to study GSHP by using stochastic analysis methodologies,

thereby empowering it with powerful mathematical properties. This guarantees unambiguous

simulation possibility of the model and allows speeding up this simulation while keeping the model

properties intact. However, using GSHP to construct a model of a complex operation is not easy.

To support the modelling and the subsequent verification both by mathematical and by multiple

operational domain experts, a supporting graphical modelling formalism is desired. Petri nets

have shown to be useful for developing models of various complex applications. Typical Petri net

features are concurrency and synchronisation mechanism, hierarchical and modular construction,

and natural expression of causal dependencies, in combination with graphical and analytical

representations.

The aim of this thesis is to combine the strengths of Petri net modelling formalisms and those

of GSHP. First, dynamically coloured Petri nets (DCPN) are developed, and proof of equivalence

is provided with piecewise deterministic Markov processes, which is a particular class of GSHP.

Next, DCPN are extended to stochastically and dynamically coloured Petri nets (SDCPN), and

proof of equivalence is provided with GSHP. Subsequently, SDCPN are extended to SDCPN with

interconnection mapping types (SDCPNimt) and proof of equivalence is provided with both SDCPN

and GSHP. It is shown with illustrative air transport examples that these three classes of Petri

net are very effective when it comes to the compositional modelling of operations consisting of

many distributed components that behave and interact in a dynamic way with many uncertainties.

With the equivalence relations between these formalisms, the properties and strengths of the various

approaches are combined. The many applications of the approach developed in this thesis, executed

at NLR and beyond, show that both the approach and its combined strengths are acknowledged and

supported by practice.

192

Samenvatting

Een general stochastic hybrid process (GSHP) is een wiskundig formalisme waar de meeste

aspecten van complexe operaties mee gemodelleerd kunnen worden, zoals tijdsafhankelijkheden,

multi-dimensionale continue en discrete processen, discontinuiteiten, en model onzekerheden.

Daarnaast kunnen GSHP worden bestudeerd via stochastische analyse methodes, waarmee ze

krachtige wiskundige eigenschappen krijgen. Dit alles zorgt voor een unieke simulatie van het

model die bovendien versneld kan worden bij gelijkblijvende modeleigenschappen. Echter, bij

het modelleren van een complexe operatie zijn GSHP niet gemakkelijk in het gebruik. Om het

modelleren en de aansluitende modelverificatie door zowel wiskundige experts als verschillende

operationele domein experts te ondersteunen is een grafisch hulpmiddel onontbeerlijk. Petri

netten hebben voor het ontwikkelen van modellen voor vele complexe toepassingen hun waarde

reeds bewezen. Typische Petri net eigenschappen zijn mechanismes om parallelle processen en

gesynchroniseerde processen te modelleren, hierarchische en modulaire constructies te bouwen,

en causale verbanden op natuurlijke wijze te representeren, en dat in combinatie met zowel een

grafische representatie als een representatie via wiskundige formules.

Dit proefschrift beoogt de kracht van Petri netten en GSHP te combineren. Eerst worden

dynamically coloured Petri nets (DCPN) ontwikkeld, en er wordt bewezen dat deze equivalent zijn

met piecewise deterministic Markov processes, een bepaalde klasse van GSHP. Vervolgens worden

DCPN uitgebreid tot stochastically and dynamically coloured Petri nets (SDCPN), en er wordt

bewezen dat deze equivalent zijn met GSHP. Als derde worden SDCPN uitgebreid tot SDCPN with

interconnection mapping types (SDCPNimt) en er wordt bewezen dat deze equivalent zijn met zowel

SDCPN als GSHP. Met diverse aansprekende voorbeelden uit het luchtverkeer wordt geillustreerd

dat deze drie Petri net klasses erg effectief zijn bij het compositioneel modelleren van operaties

die bestaan uit veel gedecentreerde componenten die zich gedragen en elkaar beinvloeden op een

dynamische manier met veel onzekerheden. Met de equivalentierelaties tussen de formalismes

worden de kracht en eigenschappen van de verschillende aanpakken gecombineerd. De vele

toepassingen van de aanpak ontwikkeld in dit proefschrift, die zowel bij het NLR als daarbuiten

reeds zijn uitgevoerd, laten zien dat zowel de aanpak als zijn combinatie van goede eigenschappen

door de praktijk worden bekrachtigd en ondersteund.

194

Acknowledgements

The SDCPN development started within the context of the project MUFTIS (Model Use

and Fast Time Simulation Studies) that the National Aerospace Laboratory NLR, with partners,

executed for the European Commission during 1995 and 1996. This project aimed at developing

models and techniques for the evaluation of air traffic management (ATM) operations. The first part

of the study, [EKBF96], revealed that commonly used models for safety risk evaluation lack the

capability to address the complex dynamic interactions that occur in ATM. Therefore, the second

part of the study [EKB96] was dedicated to investigating dynamic assessment techniques.

The first step was to adopt an appropriate set of equations for the risk of a collision between

aircraft. The one that appeared most suitable was the one developed in [BB93], named generalised

Reich collision risk equations. These equations use as input a probability density function for

the relative position and velocity of two aircraft. Unfortunately, the precise form of this function

is generally unknown, in particular under conditions of safety-related occurrences that may be

applicable for future operational concepts. Therefore, a modelling formalism was required to

support the evaluation of aircraft behaviour for a range of ATM operations. There were two

main selection criteria for this modelling formalism: 1) It needed to have a powerful stochastic

analysis support that ensured the collision risk to be uniquely evaluated; 2) It needed to have a

powerful graphical support, for model development, verification and communication purposes. The

stochastic analysis support was soon found in piecewise deterministic Markov processes (PDP),

[Dav84, Dav93]. For the graphical support, Petri nets were considered as a good candidate.

The original idea to have a closer look at Petri nets came (in 1995) from Henk Blom, who came

across the formalism through Nicolas Fota, co-author of the MUFTIS part 1 report (and now with

Eurocontrol). Henk asked if I knew Petri nets and if I wanted to investigate whether they could be

of use to us. And I did.2 Subsequently, within MUFTIS, several classes of Petri net were identified

and considered for useful elements, and a first informal mapping from PDP into Petri nets was

drafted, [EKB96].

However, to take advantage of both the stochastic analysis support and the graphical support

2I knew Petri nets from my stay at Eindhoven University of Technology (1992-1994), and had also seen them used

in practice at my six-months graduation internship for Eindhoven, which I executed at Railned in 1994.

196

selected, the existence of a formal equivalence relationship between the Petri net class used and the

class of PDP was considered a must. After the MUFTIS project ended, a range of existing Petri net

classes were considered as candidates for this purpose (many of which are described in Chapter 2),

but for none of these classes, a mapping to PDP could be proven. This motivated the development

of a new class, which was named dynamically coloured Petri net (DCPN)3. The first version was

published in 1997, [EBK97], with the mapping from PDP into DCPN proven (not yet vice versa).

From this first development onwards, the DCPN definition was improved and further for-

malised, it was used for the modelling of several air transport applications, and at the request of

users, it was enriched with more modelling power by means of additional Petri net features (such

as inhibitor arcs, enabling arcs, immediate transitions). In parallel to this, through a sequence

of studies, [EB00, EB05], the proof of mapping from DCPN into PDP was also established, and

updated each time an additional Petri net practical modelling feature was added. The eventual result

is Chapter 3.

The next extension was the formal inclusion of diffusion terms in the token colours. Diffusion

exists in air transport operations for example in the form of stochastic variations around position and

velocity of an aircraft, but is not covered by PDP. In early air transport modelling exercises at NLR,

diffusion terms were added to DCPN terms in an ad hoc way. When [BL03, BLGP03] formally

extended PDP to GSHS (general stochastic hybrid system) by inclusion of diffusion, DCPN were

formally extended to SDCPN, and equivalence relations between SDCPN and GSHS were proven,

[EB06]. In SDCPN, the added ‘S’ stands for stochastically.

When the work for this PhD thesis was already far advanced, I stumbled upon a few ‘issues’

related to the formal execution of a GSHS. There were two options: (1) Try to solve these issues;

(2) Find another class of stochastic hybrid process equivalent to SDCPN. A few such classes were

candidate for this at [HYB05], and the choice was made to study hybrid stochastic differential

equations (HSDE) as developed in [Blo03, BBEP03]. The eventual result is Chapter 4. The change

from GSHS to HSDE proved to be challenging; however, it also made the study more interesting,

in that Chapter 4 is now not a straightforward extension of Chapter 3. In hindsight, the change

was particularly fortunate since it allowed the establishment of relations between three formalisms

(SDCPN, GSHS, HSDE) rather than two, which significantly broadened the scope and strength of

the developments, [EB10a, EB10b], see Chapter 7.

The last extension of the formalism were features that enrich the compositional specification

power of SDCPN. The development of these features started during 1999. The trigger was the

desire to separate local modelling issues (e.g., model of a pilot, model of an aircraft system) from

global modelling issues (e.g. model of how the pilot interacts with the aircraft). The first version

3After failing to find a good name, I wrote out a contest for my colleagues. The name DCPN was proposed (in

January 1997) by former NLR employee Jasper Daams, who is now with the Dutch Air Traffic Control (LVNL). He

won a certificate of appreciation and a box of chocolates for this winning proposal.

197

of the approach was documented in [EB02]. This first version was further enhanced and improved,

by making use of experience obtained in practical applications. The result was named SDCPNimt,

where ‘imt’ stands for interconnection mapping types, see [EKBK06] and Chapter 5.

During the time I was given to work on this thesis, I took the opportunity to incorporate a few

improvements both in the definition of all three Petri net classes developed, and in their proofs of

equivalence to stochastic hybrid processes.

The history described above may make clear that this thesis was not written in a day, and

not even in your typical four-year University stay. It may also make clear that I could not have

completed this thesis without the help and support of others. Therefore, I take this opportunity to

say a big thanks.

First of all, I want to thank the National Aerospace Laboratory NLR and its Air Transport Safety

Institute for providing me the opportunity to write this thesis, and for giving the support throughout

the years for writing intermediate results in conference and journal papers. I thank Alex Rutten in

particular for arranging the financial support to write a part of this thesis during company hours.

Second, I thank my promotors Arun Bagchi and Boudewijn Haverkort, as well as Anton Stoorvogel

of the University of Twente for providing valuable comments on the final concept version of this

thesis, and Jaroslav Krystul for providing valuable insights into stochastic processes.

I want to express my deepest gratitude to Henk Blom of NLR for his support and encouragement

throughout the years. Henk is always several steps ahead of everybody, and is in hindsight always

right. I am time and time again astonished by his insight and knowledge of so many diverse subjects.

Without his vision and motivation, this thesis would not have been as complete as it is now, and

perhaps would not have been completed at all.

I also want to thank all of my colleagues at the NLR Air Transport Safety Institute for making

work look like a hobby, and for frequently showing their interest about the progress in writing

this booklet. A special thanks is for Bert Bakker, Bas van Doorn, Bart Klein Obbink, Margriet

Klompstra, Sybert Stroeve, and Hicham Zmarrou, and also for Jasper Daams and Marco van der

Park (both formerly NLR and currently at LVNL), Ítalo de Oliveira (São Paolo University), Heber

Herencia-Zapana (Old Dominion University), Fedja Netjasov (Belgrade University) and Eri Itoh

(Tokyo University), for their persistence during their development of SDCPN models covering

hundreds of pages of Petri net graphs and tables, and for their very valuable suggestions that

ultimately improved the practical modelling power of SDCPNimt. Without their enthusiasm, I would

have lacked the motivation to write this thesis.

I want to thank my parents for their endless love and support and for making me wanting them

to feel proud. And finally, a BIG hug goes to my main men: my husband Frans Panken and our

sons David and Ruben. Thank you for your patience and support when “mummy had to work on

her book again”. You truly make life a joy.

198

Curriculum vitae

Mariken Everdij was born on 17 March 1968 in Wageningen, the Netherlands. In 1986 she

received her VWO diploma from CLV in Veenendaal, after which she went to the University of

Twente to study Applied Mathematics. In 1992 she obtained her MSc degree. The title of her

Master’s thesis was “Jump linear quadratic Gaussian control under regime uncertainties”, which

was completed during her final graduation project at the National Aerospace Laboratory NLR in

Amsterdam. During 1992–1994 she studied at Eindhoven University of Technology and obtained a

Master of Technological Design (MTD) degree in Mathematics for Industry. Part of the programme

was a final graduation project, which she executed at Railned, the independent organisation for

railway safety. The title of her MTD thesis was “Judging the stability of train timetables”. From

October 1994 she is an employee at NLR, where she has been working on developing stochastic

dynamic models as basis for insight and safety analysis of enhancements in air transport operations.

Part of these developments are a stochastically and dynamically Petri net formalism and a method

for bias and uncertainty assessment in risk models. She is now a senior scientist at NLR’s Air

Transport Safety Institute, where she works on developing safety methods to address future air

transport operations that involve many diverse stakeholders. Mariken is married to Frans Panken

and together they have two sons: David (born in 2000) and Ruben (born in 2003).

	17075_OmslagEverdijThesis_LilaWit_24-04-2010.pdf
	17075_EverdijThesis_binnenwerk_26-04-2010.pdf

